已知數(shù)列{2n-1•an}的前n項(xiàng)和Sn=9-6n
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè),求數(shù)列的前n項(xiàng)和.
【答案】分析:(1)先根據(jù)數(shù)列{2n-1•an}的前n項(xiàng)和Sn=9-6n求出數(shù)列{2n-1•an}的通項(xiàng)公式,再計(jì)算數(shù)列{an}的通項(xiàng)公式.
(2)根據(jù),以及(1)中求出的數(shù)列{an}的通項(xiàng)公式,求出數(shù)列{bn}的通項(xiàng)公式,再求出數(shù)列的通項(xiàng)公式,最后利用裂項(xiàng)相消法求前n項(xiàng)和.
解答:解:(1)n=1時(shí),2•a1=S1=3∴a1=3
n≥2時(shí),2n-1•an=Sn-Sn-1=-6∴
∴通項(xiàng)公式
(2)當(dāng)n=1時(shí),
n≥2時(shí),

=
點(diǎn)評(píng):本題考查了構(gòu)造法求數(shù)列的通項(xiàng)公式,以及裂項(xiàng)相消法求數(shù)列的和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{2n-1•an}的前n項(xiàng)和Sn=9-6n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=n(3-log2
|an|
3
),設(shè)數(shù)列{
1
bn
}的前n項(xiàng)和為T(mén)n,是否存在最大的整數(shù)m,使得對(duì)任意n∈N*均有Tn
m
27
成立.若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{2n-1•an}的前n項(xiàng)和Sn=9-6n
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bn=n(3-log2
|an|
3
)
,求數(shù)列{
1
bn
}
的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{2n-1•an}的前n項(xiàng)和Sn=9-6n.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bn=n(3-log2
|an|
3
),求數(shù)列{
1
bn
}的前n項(xiàng)和.
(3)數(shù)列{cn}的首項(xiàng)c1=1,且cn-2cn-1=|an|(n≥2),求數(shù)列{cn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省肇慶市封開(kāi)縣南豐中學(xué)高三數(shù)學(xué)綜合練習(xí)3(必修5)(解析版) 題型:解答題

已知數(shù)列{2n-1•an}的前n項(xiàng)和Sn=9-6n
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案