設等差數(shù)列{an}的前n項和為Sn,若S9>0,S10<0,則數(shù)學公式中最大的是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:由,可得,a5>0,a6<0
結合等差數(shù)列的通項可得,a1>a2>a3>a4>a5>0>a6>…即可得,,則可得
解答:∵,
∴a5>0,a5+a6<0,a6<0
∴等差數(shù)列{an}中,a1>a2>a3>a4>a5>0>a6>…


故選B
點評:本題主要考查了利用等差數(shù)列前n項和公式來判斷數(shù)列項的取值范圍,靈活利用等差數(shù)列的性質(若m+n=p+q,則am+an=ap+aq)是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案