【題目】若函數f(x)=lnx+ax2﹣(a+2)x在 處取得極大值,則正數a的取值范圍是 .
【答案】(0,2)
【解析】解:f(x)的定義域是(0,+∞),
f′(x)= +2ax﹣(a+2)= ,
①a≤0時,ax﹣1<0,
令f′(x)>0,解得:x> ,令f′(x)<0,解得:0<x< ,
故 是函數的極小值點,不合題意,
②0<a<2時, < ,
令f′(x)>0,解得:x< 或x> ,
令f′(x)<0,解得: <x< ,
∴f(x)在(0, )遞增,在( , )遞減,在( ,+∞)遞增,
∴函數f(x)在 處取得極大值,符合題意,
③a=2時,f′(x)≥0,f(x)遞增,無極值,
④a>2時, > ,
令f′(x)>0,解得:x> 或x< ,
令f′(x)<0,解得: <x< ,
∴f(x)在(0, )遞增,在( , )遞減,在( ,+∞)遞增,
∴函數f(x)在x= 處取得極大值,不符合題意,
綜上,a∈(0,2),
所以答案是:(0,2).
【考點精析】掌握函數的極值與導數是解答本題的根本,需要知道求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.
科目:高中數學 來源: 題型:
【題目】如圖,正方體ABCD﹣A′B′C′D′中,E是棱BC的中點,G是棱DD′的中點,則異面直線GB與B′E所成的角為( )
A.120°
B.90°
C.60°
D.30°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某高級中學學生的體重狀況,打算抽取一個容量為n的樣本,已知該校高一、高二、高三學生的數量之比依次為4:3:2,現用分層抽樣的方法抽出的樣本中高三學生有10人,那么樣本容量n為( )
A.50
B.45
C.40
D.20
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,拋物線的方程為.
(1)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,求的極坐標方程;
(2)直線的參數方程是(為參數),與交于兩點, ,求的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農戶準備建一個水平放置的直四棱柱形儲水器(如圖),其中直四棱柱的高,兩底面是高為,面積為的等腰梯形,且,若儲水窖頂蓋每平方米的造價為100元,側面每平方米的造價為400元,底部每平方米的造價為500元.
(1)試將儲水窖的造價表示為的函數;
(2)該農戶如何設計儲水窖,才能使得儲水窖的造價最低,最低造價是多少元?(取).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(2cosx, sinx), =(3cosx,﹣2cosx),設函數f(x)=
(1)求f(x)的最小正周期;
(2)若x∈[0, ],求f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足:a2=5,a5+a7=26,數列{an}的前n項和為Sn .
(1)求an及Sn;
(2)設{bn﹣an}是首項為1,公比為3的等比數列,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分別為AB,A1C1 , BC的中點.
求證:
(1)C1P∥平面MNC;
(2)平面MNC⊥平面ABB1A1 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com