已知P:2≤m≤8,Q:函數(shù)f(x)=x3+mx2+(m+6)x+1存在極大值和極小值,求使“P∩¬Q”為真命題的m的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,復(fù)合命題的真假
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出函數(shù)f(x)的導(dǎo)函數(shù),根據(jù)已知條件,導(dǎo)函數(shù)必有兩個(gè)不相等的實(shí)數(shù)根,只須令導(dǎo)函數(shù)的判別式大于0,求出m的范圍,可得¬Q中,m∈[-3,6],由此即可求出使“P∩¬Q”為真命題的m的取值范圍.
解答: 解:∵函數(shù)f(x)=x3+mx2+(m+6)x+1既存在極大值,又存在極小值
f′(x)=3x2+2mx+m+6=0,它有兩個(gè)不相等的實(shí)根,
∴△=4m2-12(m+6)>0
解得m<-3或m>6,
∴¬Q中,m∈[-3,6],
∵P:2≤m≤8,
∴使“P∩¬Q”為真命題的m的取值范圍為[2,6].
點(diǎn)評(píng):本題主要考查了函數(shù)在某點(diǎn)取得極值的條件,考查復(fù)合命題的真假的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m=x2+y2-2x+2y,n=-5,則m與n的大小關(guān)系是( 。
A、m>nB、m<n
C、m=nD、與x、y的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知3x=log12(3y)+log12
4
y
)(y>0),則x的值是( 。
A、-1B、0C、1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖程序中,要使輸入的X和輸出的Y值相等,則滿足條件的X的個(gè)數(shù)是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓心為P的動(dòng)圓過(guò)點(diǎn)(2,0)且與直線l:x=-2相切.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)過(guò)點(diǎn)(1,0)的直線與點(diǎn)P的軌跡交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若AO,BO所在直線分別與直線y=x+4交于E,F(xiàn),求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3+ax2+bx+c,試問(wèn)當(dāng)a,b分別滿足什么條件時(shí).
(1)函數(shù)f(x)沒(méi)有極值;
(2)函數(shù)f(x)有一個(gè)極值;
(3)函數(shù)f(x)有兩個(gè)極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnax+bx+
a
x
在x=-1時(shí)取極值.
(1)求b的取值范圍;
(2)若a=-1函數(shù)f(x)=2x+m有兩個(gè)不同的交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=-
2
3
與x=1時(shí)都取得極值.
(1)求a,b的值與函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(0)=1,且x∈[-1,2],求函數(shù)f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2lnx+
1
2
x2,g(x)=3x+b-1.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)設(shè)F(x)=f(x)-g(x),
(ⅰ)求函數(shù)y=F(x)的單調(diào)區(qū)間;
(ⅱ)若方程F(x)=0有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案