已知f(x)是定義在(0,+∞)上的單調(diào)遞增函數(shù),對(duì)于任意的m、n(m、n∈)(0,+∞)滿足f(m)+f(n)=f(mn),且a、b(0<a<b)滿足

(1)求f(1);

(2)若f(2)=1,解不等式f(x)<2;

(3)求證:

答案:
解析:

  解:(1)令m=n=1,由,得

  ∴ 4分

  (2)∵,∴ 7分

  又上單調(diào)遞增

  ∴0<x<4 ∴<2的解集為(0,4) 10分

  (3)∵,上單調(diào)遞增

  ∴時(shí),

  時(shí),

  又

  ∴ 12分

  ∵0<a<b ∴

  ∴

  ∴ab=1 ∴0<a<1<b

  又∵,且b>1,

  ∴

  ∴ 15分

  ∴,考慮到0<a<1

  ∴

  ∴ 17分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論中正確的是
①②③
①②③

①函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(x+1)=-f(x),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱;
②已知ξ~N(16,σ2),若P(ξ>17)=0.35,則P(15<ξ<16)=0.15;
已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]上是增函數(shù).設(shè)a=f(ln
1
3
),b=f(log43),
c=f(0.4-1.2),則c<a<b;

④線性相關(guān)系數(shù)r的絕對(duì)值越接近于1,表明兩個(gè)變量線性相關(guān)程度越弱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的函數(shù),它的反函數(shù)為f-1(x),若y=f-1(x+1)與y=f(x+1)互為反函數(shù),且f(1)=1,則f(2)的值為

A.2                  B.1                   C.0                   D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a,b∈R,滿足f(a·b)=af(b)+bf(a),f(2)=2,a=(n∈N*),b=(n∈N*);考查下列結(jié)論:

f(0)=f(1);②f(x)為偶函數(shù);③數(shù)列{a}為等比數(shù)列;④{b}為等差數(shù)列.

其中正確的是               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高一第一次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知f(x)是定義在( 0,+∞)上的增函數(shù),

且f() = f(x)-f(y)  

(1)求f(1)的值;

(2)若f(6)= 1,解不等式 f( x+3 )-f() <2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年黑龍江省高一上學(xué)期期末考試數(shù)學(xué)試卷 題型:填空題

已知f (x)是定義在上的奇函數(shù),當(dāng)時(shí),f (x)的圖象如圖所示,那么f (x)的值域是                   

 

查看答案和解析>>

同步練習(xí)冊(cè)答案