已知橢圓C:的離心率為,F(xiàn)1、F2分別為橢圓C的左、右焦點(diǎn),若橢圓C的焦距為2.
(1)求橢圓C的方程;
(2)設(shè)M為橢圓上任意一點(diǎn),以M為圓心,MF1為半徑作圓M,當(dāng)圓M與橢圓的右準(zhǔn)線l有公共點(diǎn)時(shí),求△MF1F2面積的最大值.
解:(1)因?yàn)?c=2,且,
所以c=1,a=2.
所以b2=3.
所以橢圓C的方程為
(2)設(shè)點(diǎn)M的坐標(biāo)為(x0,y0),則
因?yàn)镕1(﹣1,0),,
所以直線l的方程為x=4.
由于圓M與l有公共點(diǎn),所以M到l的距離4﹣x0小于或等于圓的半徑R.
因?yàn)镽2=MF12=(x0+1)2+y02,
所以(4﹣x02≤(x0+1)2+y02,即y02+10x0﹣15≥0.
又因?yàn)?IMG style="WIDTH: 110px; HEIGHT: 44px; VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20120904/201209041142478912428.png">,所以
解得
,

當(dāng)時(shí),,
所以,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:的離心率為,且經(jīng)過點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:選擇題

已知橢圓C:的離心率為,過右焦點(diǎn)且斜率為的直線與橢圓C相交于、兩點(diǎn).若,則 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知橢圓C:,它的離心率為.直線與以原點(diǎn)為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年吉林一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

.已知橢圓C:的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線與橢圓C交于兩點(diǎn),點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案