【題目】已知函數(shù)f(x)=x3﹣x2﹣2a,若存在x0∈(﹣∞,a],使f(x0)≥0,則實數(shù)a的取值范圍為

【答案】[﹣1,0]∪[2,+∞)
【解析】解:∵函數(shù)f(x)=x3﹣x2﹣2a,

∴f′(x)=3x2﹣2x,

當x<0,或x> 時,f′(x)>0,當0<x< 時,f′(x)<0,

故當x=0時,函數(shù)取極大值﹣2a,

若a≤0,若存在x0∈(﹣∞,a],使f(x0)≥0,則f(a)=a3﹣a2﹣2a≥0,

解得:a∈[﹣1,0],

若a>0,若存在x0∈(﹣∞,a],使f(x0)≥0,則f(0)=﹣2a≥0,或f(a)=a3﹣a2﹣2a≥0,

解得:a∈[2,+∞),

綜上可得:a∈[﹣1,0]∪[2,+∞),

所以答案是:[﹣1,0]∪[2,+∞).

【考點精析】解答此題的關鍵在于理解特稱命題的相關知識,掌握特稱命題,,它的否定,;特稱命題的否定是全稱命題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中, =
(1)求角A;
(2)若a= ,求bc的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax2(a∈R).
(1)若g(x)= 有三個極值點x1 , x2 , x,求a的取值范圍;
(2)若f(x)≥﹣ax3+1對任意x∈[0,1]都恒成立的a的最大值為μ,證明:5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2的圖象經過點M(1,4),且在x=﹣2取得極值.
( I)求實數(shù)a,b的值;
( II)若函數(shù)f(x)在區(qū)間(m,m+1)上不單調,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=﹣1,a2=1,且
(1)求a5+a6的值;
(2)設Sn為數(shù)列{an}的前n項的和,求Sn;
(3)設bn=a2n﹣1+a2n , 是否存正整數(shù)i,j,k(i<j<k),使得bi , bj , bk成等差數(shù)列?若存在,求出所有滿足條件的i,j,k;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 滿足Sn=2an﹣1,n∈N*.數(shù)列{bn}滿足nbn+1﹣(n+1)bn=n(n+1),n∈N*,且b1=1.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若cn=an ,數(shù)列{cn}的前n項和為Tn , 對任意的n∈N*,都有Tn<nSn﹣a,求實數(shù)a的取值范圍;
(3)是否存在正整數(shù)m,n使b1 , am , bn(n>1)成等差數(shù)列,若存在,求出所有滿足條件的m,n,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】銳角△ABC中,角A、B、C所對的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB).
(Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大;
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,過橢圓C: 的左頂點A作直線l,與橢圓C和y軸正半軸分別交于點P,Q.

(1)若AP=PQ,求直線l的斜率;
(2)過原點O作直線l的平行線,與橢圓C交于點M,N,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x,
(1)求h(x)的最大值;
(2)若關于x的不等式xf(x)≥﹣2x2+ax﹣12對一切x∈(0,+∞)恒成立,求實數(shù)a的取值范圍;
(3)若關于x的方程f(x)﹣x3+2ex2﹣bx=0恰有一解,其中e是自然對數(shù)的底數(shù),求實數(shù)b的值.

查看答案和解析>>

同步練習冊答案