已知函數(shù)f(x)=lnx-ax+1(x>0)
(1)若對(duì)任意的x∈[1,+∞),f(x)≤0恒成立,求實(shí)數(shù)a的最小值.
(2)若a=
5
2
且關(guān)于x的方程f(x)=-
1
2
x2+b在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.
分析:(1)利用參變量分離法將恒成立轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,再利用導(dǎo)數(shù)求出最值,列出不等關(guān)系,即可求得a的取值范圍,從而得到實(shí)數(shù)a的最小值;
(2)利用參變量分離法轉(zhuǎn)化為b=
1
2
x2+lnx-
5
2
x+1,x∈[1,4]有兩個(gè)不等的實(shí)根,令h(x)=b=
1
2
x2+lnx-
5
2
x+1,再將方程有兩個(gè)不等的實(shí)數(shù)根轉(zhuǎn)化為函數(shù)y=b與y=h(x)在[1,4]上有兩個(gè)不同的交點(diǎn),再結(jié)合圖象即可求得實(shí)數(shù)b的取值范圍.
解答:解:(1)∵對(duì)任意的x∈[1,+∞),f(x)=lnx-ax+1≤0恒成立,
∴a≥
lnx+1
x
在[1,+∞)上恒成立,
令g(x)=
lnx+1
x
,x∈[1,+∞),
則g′(x)=
1
x
×x-lnx-1
x2
=0,解得x=1,
當(dāng)x∈(1,+∞)時(shí),g′(x)<0,即g(x)在(1,+∞)上單調(diào)遞減,
∴g(x)在[1,+∞)上的最大值為g(1)=1,
∴a≥1,即實(shí)數(shù)a的最小值為1;
(2)∵a=
5
2
,f(x)=-
1
2
x2+b,
∴b=
1
2
x2+lnx-
5
2
x+1,x∈[1,4]有兩個(gè)不等的實(shí)根,
令h(x)=
1
2
x2+lnx-
5
2
x+1,x∈[1,4],
∴h′(x)=x+
1
x
-
5
2
=
2x2-5x+2
2x
=
(x-2)(2x-1)
2x
,
令h′(x)=0,則x=
1
2
(舍)或x=2,
∴h(x)在(1,2)上單調(diào)遞減,在(2,4)上單調(diào)遞增,
∴h(x)在x=2處取得極小值h(2)=ln2-2,又h(1)=-1,h(4)=ln4-1>-1=h(1),
要使b=
1
2
x2+lnx-
5
2
x+1,x∈[1,4]有兩個(gè)不等的實(shí)根,
則y=b與y=h(x)的圖象在x∈[1,4]有兩個(gè)不同的交點(diǎn),
結(jié)合圖象可知,ln2-2<b≤-1,
故實(shí)數(shù)b的取值范圍是ln2-2<b≤-1.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,從而得到函數(shù)的簡(jiǎn)圖,同時(shí)考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系,將方程有解問(wèn)題轉(zhuǎn)化為函數(shù)的圖象有交點(diǎn)進(jìn)行解決.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線(xiàn)l:y=kx-2與曲線(xiàn)y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線(xiàn)l∥AB,則稱(chēng)直線(xiàn)AB存在“伴侶切線(xiàn)”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱(chēng)直線(xiàn)AB存在“中值伴侶切線(xiàn)”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線(xiàn)AB是否存在“中值伴侶切線(xiàn)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線(xiàn)l過(guò)點(diǎn)(0,-1),并且與曲線(xiàn)y=f(x)相切,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案