分析:(1)要證明數(shù)列{an}為等差數(shù)列,需證明an-an-1=d,由已知條件可得(an-an-1-2)(an+an-1)=0,即可得出結(jié)論;
(2)證明數(shù)列{bn+3}是以4為首項(xiàng),2為公比的等比數(shù)列,即可求數(shù)列{bn}的通項(xiàng)公式.
解答:(1)證明:∵
是
與
(an+1)2的等比中項(xiàng),
∴S
n=
(an+1)2,
∴n≥2時(shí),
Sn-1=(an-1+1)2,
兩式相減可得a
n=
(an+1)2-
(an-1+1)2,
化簡(jiǎn)可得(a
n-a
n-1-2)(a
n+a
n-1)=0,
∵a
n+a
n-1>0,
∴a
n-a
n-1=2,
∵
S1=(a1+1)2,∴a
1=1,
∴數(shù)列{a
n}以1為首項(xiàng),以2為公差的等差數(shù)列;
(2)解:∵b
n=2b
n-1+3,
∴b
n+3=2(b
n-1+3),
∵b
1=a
1=1,∴b
1+3=4,
∴數(shù)列{b
n+3}是以4為首項(xiàng),2為公比的等比數(shù)列,
∴b
n+3=4•2
n-1=2
n+1,
∴b
n=2
n+1-3.
點(diǎn)評(píng):本題考查等差數(shù)列、等比數(shù)列的證明,考查學(xué)生的計(jì)算能力,求解的關(guān)鍵是要把握遞推公式的轉(zhuǎn)化.