13.如圖,在△ABC中,AC=10,$AB=2\sqrt{19}$,BC=6,D是邊BC延長線上的一點,∠ADB=30°,求AD的長.

分析 利用余弦定理,求出∠ACB=60°,∠ACD=120°,在△ACD中,AC=10,∠ADB=30°,∠ACD=120°,利用正弦定理可得結(jié)論.

解答 解:在△ABC中,AB=10,AC=14,BC=6,
由余弦定理得$cos∠ACB=\frac{{A{C^2}+B{C^2}-A{B^2}}}{2AC•BC}=\frac{100+36-76}{2×10×6}=\frac{1}{2}$,
所以∠ACB=60°,∠ACD=120°,
在△ACD中,AC=10,∠ADB=30°,∠ACD=120°,…8分
由正弦定理得,$\frac{AC}{sin∠ADB}=\frac{AD}{sin∠ACB}$
所以$AD=\frac{AC•sin∠ACB}{sin∠ADB}=\frac{{10•sin{{120}°}}}{{sin{{30}°}}}=10\sqrt{3}$…12分.

點評 本題考查正弦、余弦定理的運用,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn,an>0,且滿足:(an+2)2=4Sn+4n+1,n∈N*
(1)求a1及通項公式an;
(2)若bn=(-1)n•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在長豐中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績(得分均為整數(shù))進行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.
(1)求第二小組的頻率,并補全這個頻率分布直方圖;
(2)求這兩個班參賽的學(xué)生人數(shù),并回答這兩個班參賽學(xué)生的成績的中位數(shù)應(yīng)落在第幾小組內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tsinφ}\\{y=1+tcosφ}\end{array}\right.$(t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=4sinθ.
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(II)設(shè)直線l與曲線C相交于A,B兩點,當(dāng)φ變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2+12ρcosθ+11=0.
(Ⅰ)說明C是哪種曲線?并將C的方程化為直角坐標(biāo)方程;
(Ⅱ)直線l與C交于A,B兩點,|AB|=$\sqrt{10}$,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.f(x)=x(x-c)2在x=2處有極小值,則常數(shù)c的值為(  )
A.2B.6C.2或6D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=f(x),若在定義域內(nèi)存在x0,使得f(-x0)=-f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(1)若a∈R,a≠0,證明:函數(shù)f(x)=ax2+x-a必有局部對稱點;
(2)若函數(shù)f(x)=2x+b在區(qū)間[-1,1]內(nèi)有局部對稱點,求實數(shù)b的取值范圍;
(3)若函數(shù)f(x)=4x-m•2x+1+m2-3在R上有局部對稱點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.橢圓與雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦點相同,且橢圓上一點到兩焦點的距離之和為10,則橢圓的離心率為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲、乙兩人的各科成績?nèi)缜o葉圖所示,則下列說法正確的是( 。
A.甲的中位數(shù)是89,乙的中位數(shù)是98
B.甲的各科成績比乙各科成績穩(wěn)定
C.甲的眾數(shù)是89,乙的眾數(shù)是98
D.甲、乙二人的各科成績的平均分不相同

查看答案和解析>>

同步練習(xí)冊答案