(本題13分) 設(shè)橢圓的對(duì)稱(chēng)中心為坐標(biāo)原點(diǎn),其中一個(gè)頂點(diǎn)為,右焦點(diǎn)與點(diǎn)的距離為.

(1)求橢圓的方程;

(2)是否存在經(jīng)過(guò)點(diǎn)的直線(xiàn),使直線(xiàn)與橢圓相交于不同的兩點(diǎn)滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

解:(1)依題意,設(shè)橢圓方程為,則其右焦點(diǎn)坐標(biāo)為,由,得,即,故. 又∵,∴,從而可得橢圓方程為.——  6分

(2)由題意可設(shè)直線(xiàn)的方程為,由知點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上,

消去,即可得方程…(*)

當(dāng)方程(*)的時(shí)方程(*)有兩個(gè)不相等的實(shí)數(shù)根.

設(shè),,線(xiàn)段的中點(diǎn),則是方程(*)的兩個(gè)不等的實(shí)根,故有.從而有  ,.

于是,可得線(xiàn)段的中點(diǎn)的坐標(biāo)為

又由于,因此直線(xiàn)的斜率為,

,得,即,解得,∴,

∴綜上可知存在直線(xiàn)滿(mǎn)足題意.————————13分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省元月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分) 設(shè)橢圓E中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長(zhǎng)為4,點(diǎn)M(2,)在橢圓上,。

(1)求橢圓E的方程;

(2)設(shè)動(dòng)直線(xiàn)L交橢圓E于A、B兩點(diǎn),且,求△OAB的面積的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省高三模擬考試數(shù)學(xué)(理科)試題 題型:解答題

(本小題滿(mǎn)分13分)

  設(shè)橢圓的離心率,右焦點(diǎn)到直線(xiàn)的距離為坐標(biāo)原點(diǎn).

   (I)求橢圓的方程;

   (II)過(guò)點(diǎn)作兩條互相垂直的射線(xiàn),與橢圓分別交于兩點(diǎn),證明點(diǎn)到直

線(xiàn)的距離為定值,并求弦長(zhǎng)度的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題13分) 設(shè)橢圓的對(duì)稱(chēng)中心為坐標(biāo)原點(diǎn),其中一個(gè)頂點(diǎn)為,右焦點(diǎn)與點(diǎn)的距離為.

(1)求橢圓的方程;

(2)是否存在經(jīng)過(guò)點(diǎn)的直線(xiàn),使直線(xiàn)與橢圓相交于不同的兩點(diǎn)滿(mǎn)足?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶市西南師大附中09-10學(xué)年高二上學(xué)期期中考試 題型:解答題

 (13分) 設(shè)橢圓的中心在原點(diǎn),坐標(biāo)軸為對(duì)稱(chēng)軸,焦點(diǎn)在x軸上,一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的連線(xiàn)互相垂直,且此焦點(diǎn)與長(zhǎng)軸上較近的端點(diǎn)距離為,

(1) 求此橢圓方程,并求出準(zhǔn)線(xiàn)方程;

(2) 若P在左準(zhǔn)線(xiàn)l上運(yùn)動(dòng),求的最大值.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案