設(shè)點(diǎn)是曲線上的動點(diǎn),點(diǎn)到點(diǎn)(0,1)的距離和它到焦點(diǎn)的距離之和的最小值為.

(1)求曲線C的方程;

(2)若點(diǎn)的橫坐標(biāo)為1,過作斜率為的直線交于點(diǎn),交軸于點(diǎn),過點(diǎn)且與垂直的直線與交于另一點(diǎn),問是否存在實(shí)數(shù),使得直線與曲線相切?若存在,求出的值;若不存在,請說明理由.

 

【答案】

(1);(2).

【解析】第一問中國,利用依題意知,解得,所以曲線的方程為

第二問中,設(shè)直線的方程為:,則點(diǎn)聯(lián)立方程組,消去

.所以得直線的方程為.

代入曲線,.解得

解:(Ⅰ)依題意知,解得.

所以曲線的方程為. ……………………………………………………………………4分

(Ⅱ)由題意直線的方程為:,則點(diǎn)

聯(lián)立方程組,消去所以直線的斜率,從而得到結(jié)論。

.………………………………………………………………………………6分

所以得直線的方程為.

代入曲線,得.

解得.…………………………………………………………………8分

所以直線的斜率…………………………10分

過點(diǎn)的切線的斜率.

由題意有.

解得.

故存在實(shí)數(shù)使命題成立.……………………………………………………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆福建省寧德市高三普通班質(zhì)量檢測理科數(shù)學(xué) 題型:解答題

(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若圓在以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸的極坐標(biāo)系下的方程為
(Ⅰ)求曲線的普通方程和圓的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)是曲線上的動點(diǎn),點(diǎn)是圓上的動點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期第五次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)點(diǎn)是曲線上的動點(diǎn),點(diǎn)到點(diǎn)(0,1)的距離和它到焦點(diǎn)的距離之和的最小值為.

(1)求曲線C的方程;

(2)若點(diǎn)的橫坐標(biāo)為1,過作斜率為的直線交于點(diǎn),交軸于點(diǎn),過點(diǎn)且與垂直的直線與交于另一點(diǎn),問是否存在實(shí)數(shù),使得直線與曲線相切?若存在,求出的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省寧德市高三普通班質(zhì)量檢測理科數(shù)學(xué) 題型:解答題

(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若圓在以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸的極坐標(biāo)系下的方程為

(Ⅰ)求曲線的普通方程和圓的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)是曲線上的動點(diǎn),點(diǎn)是圓上的動點(diǎn),求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省寧德市高三普通班質(zhì)量檢測理科數(shù)學(xué) 題型:解答題

(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若圓在以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸的極坐標(biāo)系下的方程為

(Ⅰ)求曲線的普通方程和圓的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)是曲線上的動點(diǎn),點(diǎn)是圓上的動點(diǎn),求的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案