天水市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,

規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,

得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.

 

優(yōu)秀

非優(yōu)秀

合計

甲班

10

 

 

乙班

 

30

 

     合計

 

 

110

(1)請完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;

(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:。

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

 

 

【答案】

(1)

 

優(yōu)秀

非優(yōu)秀

合計

甲班

10

50

60

乙班

20

30

50

合計

30

80

110

 

(2)計算得到K2= ≈7.487<10.828.因此按99.9%的可靠性要求,不能認(rèn)為“成績與班級有關(guān)系”

(3)抽到9號或10號的概率為

【解析】

試題分析:

思路分析:此類問題(1)(2)直接套用公式,經(jīng)過計算“卡方”,與數(shù)表對比,作出結(jié)論。(3)是典型的古典概型概率的計算問題,確定兩個“事件”數(shù),確定其比值。

解:(1)               4分

 

優(yōu)秀

非優(yōu)秀

合計

甲班

10

50

60

乙班

20

30

50

合計

30

80

110

(2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到K2= ≈7.487<10.828.因此按99.9%的

可靠性要求,不能認(rèn)為“成績與班級有關(guān)系”           8分

(3)設(shè)“抽到9或10號”為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)為(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36個.事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7個.所以P(A)= ,即抽到9號或10號的概率為.      12分

考點(diǎn):“卡方檢驗(yàn)”,古典概型概率的計算。

點(diǎn)評:中檔題,獨(dú)立性檢驗(yàn)問題,主要是通過計算“卡方”,對比數(shù)表,得出結(jié)論。古典概型概率的計算中,常用“樹圖法”或“坐標(biāo)法”確定事件數(shù),以防重復(fù)或遺漏。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案