已知|
a
|=2|
b
|
,命題p:關(guān)于x的方程x2+|
a
|x+
a
b
=0
沒(méi)有實(shí)數(shù)根,命題q:
a
,
b
>∈[0,
π
4
]
,則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
分析:首先利用關(guān)于x的方程x2+|
a
|x+
a
b
=0
沒(méi)有實(shí)數(shù)根,可得△<0,從而可求向量夾角的范圍,進(jìn)一步可以確定兩者之間的關(guān)系.
解答:解:∵命題p:關(guān)于x的方程x2+|
a
|x+
a
b
=0
沒(méi)有實(shí)數(shù)根,∴△<0,∴
a
,
b
>∈[0,
π
3
)
,又命題q:
a
,
b
>∈[0,
π
4
]
,∴命題p是命題q的必要不充分條件,
故選B.
點(diǎn)評(píng):本題考查必要條件、充分條件和充要條件的判斷,解題時(shí)要認(rèn)真審題,仔細(xì)解答,關(guān)鍵是命題p的等價(jià)變形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2|
b
|≠0
,且關(guān)于x的方程x2+|
a
|x+
a
b
=0
有實(shí)根,則
a
b
的夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2|
b
|
,命題p:關(guān)于x的方程x2+|
a
|x+
a
b
=0
沒(méi)有實(shí)數(shù)根,命題q:
a
,
b
>∈[0,
π
4
]
,則命題p是命題q的
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2
 |
b
|=3
,
a
b
的夾角為60°,
c
=5
a
+3
b
,
d
=3
a
+k
b
,當(dāng)實(shí)數(shù)k為何值時(shí),
(1)
c
d
   
(2)
c
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2|
b
|≠0,且關(guān)于x的方程x2-|
a
|x+
a
b
=0有兩個(gè)不同的正實(shí)數(shù)根,則
a
b
的夾角范圍為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案