已知數列{an}滿足a1=5,a2=5,an+1=an+6an-1(n≥2).
(1)求證:{an+1+2an}是等比數列;
(2)求數列{an}的通項公式;
(3)設3nbn=n(3n-an),且|b1|+|b2|++|bn|<m對于n∈N*恒成立,求m的取值范圍.
【答案】
分析:(1)由題設條件先推導出a
n+1+2a
n=3(a
n+2a
n-1)(n≥2),a
2+2a
1=15,由此可知數列{a
n+1+2a
n}是以15為首項,3為公比的等比數列.
(2)由a
n+1+2a
n=5•3
n和待定系數法能夠求出數列{a
n}的通項公式.
(3)由3
nb
n=n(-2)
n,可知b
n=n(-
)
n,令S
n=|b
1|+|b
2|+…+|b
n|=(
)
2+2(
)
3+…+(n-1)(
)
n+n(
)
n+1,得S
n=6[1-(
)
n]-3n(
)
n+1<6,由此能求出m的取值范圍.
解答:解:(1)由a
n+1=a
n+6a
n-1,a
n+1+2a
n=3(a
n+2a
n-1)(n≥2)
∵a
1=5,a
2=5∴a
2+2a
1=15
故數列{a
n+1+2a
n}是以15為首項,3為公比的等比數列(5分)
(2)由(1)得a
n+1+2a
n=5•3
n由待定系數法可得(a
n+1-3
n+1)=-2(a
n-3
n)
即a
n-3
n=2(-2)
n-1故a
n=3
n+2(-2)
n-1=3
n-(-2)
n(9分)
(3)由3
nb
n=n(3
n-a
n)=n[3
n-3
n+(-2)
n]=n(-2)
n,
∴b
n=n(-
)
n令S
n=|b
1|+|b
2|+…+|b
n|
=(-
)+2(
)
2+3(
)
3+…+n(
)
nS
n
=(
)
2+2(
)
3+…+(n-1)(
)
n+n(
)
n+1(11分)
得S
n=+(
)
2+(
)
3+…+(
)
n-n(
)
n+1
=
-n(
)
n+1
=2[1-(
)
n]-n(
)
n+1∴S
n=6[1-(
)
n]-3n(
)
n+1<6
要使得|b
1|+|b
2|+…+|b
n|<m對于n∈N
*恒成立,只須m≥6(14分)
點評:本題綜合考查數列的性質和應用,解題時要認真審題,仔細求解,注意遞推式的應用.