16.在△ABC中,角A,B,C的對邊分別為a,b,c,B=45°,c=2$\sqrt{2}$,b=$\frac{4\sqrt{3}}{3}$,那么角A=75°或15°.

分析 利用正弦定理可求sinC,結(jié)合C的范圍可求C的值,利用三角形內(nèi)角和定理即可求A的值.

解答 解:∵B=45°,c=2$\sqrt{2}$,b=$\frac{4\sqrt{3}}{3}$,
∴sinC=$\frac{csinB}$=$\frac{2\sqrt{2}×\frac{\sqrt{2}}{2}}{\frac{4\sqrt{3}}{3}}$=$\frac{\sqrt{3}}{2}$,
∴解得:C=60°或120°,
∴A=180°-B-C=75°或15°.
故答案為:75°或15°.

點(diǎn)評 此題考查了正弦定理,三角形內(nèi)角和定理以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知圓x2+y2+mx-$\frac{1}{4}$=0與拋物線y=$\frac{1}{4}$x的準(zhǔn)線相切,則m=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若tanα=5tan$\frac{π}{5}$,求$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC
(1)求證:a,b,c成等比數(shù)列;
(2)若b=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.化簡:
(1)4sin2α(1-sin2α)+cos22α;
(2)$\frac{1+2cos\frac{α}{2}(sin\frac{α}{2}-cos\frac{α}{2})}{sinα-cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.點(diǎn)(a,b)在圓x2+y2=1內(nèi)部,則直線ax+by-2=0與x2+y2=4的位置關(guān)系是相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)F1、F2是橢圓$\frac{{x}^{2}}{4}$+y2=1的左右焦點(diǎn),動點(diǎn)P在橢圓上,則$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}}{|P{F}_{1}||P{F}_{2}|}$的取值范圍為(0,$\frac{2π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}-a(x<1)\\ ln(x+a)(x≥1).\end{array}\right.$其中a>-1.
①當(dāng)a=0時(shí),若f(x)=0,則x=1;
②若f(x)在(-∞,+∞)上是單調(diào)遞增函數(shù),則a的取值范圍[ee-1-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=x3-6x2+9x-10的零點(diǎn)個(gè)數(shù)為1 個(gè).

查看答案和解析>>

同步練習(xí)冊答案