設(shè)拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A、B兩點.點C在拋物線的準線上,且BC∥X軸.證明直線AC經(jīng)過原點O.

答案:
解析:

  證明1:因為拋物線()的焦點為,所以經(jīng)過點F的直線AB的方程可設(shè)為

  ,代人拋物線方程得

  

  若記,則是該方程的兩個根,

  所以

  因為BC∥X軸,且點C在準線上,所以點C的坐標為,

  故直線CO的斜率為

  即也是直線OA的斜率,所以直線AC經(jīng)過原點O.

  證明2:如圖,

  記X軸與拋物線準線L的交點為E,

  過A作AD⊥L,D是垂足.則AD∥FE∥BC.

  連結(jié)AC,與EF相交于點N,則

  根據(jù)拋物線的幾何性質(zhì),|AF|=|AD|,|BF|=|BC|,

  

  即點N是EF的中點,與拋物線的頂點O重合,所以直線AC經(jīng)過原點O.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:設(shè)計選修數(shù)學-1-1蘇教版 蘇教版 題型:047

設(shè)拋物線y2=2px(p>0)的焦點為F,直線l過點F交拋物線于A、B兩點,點M在拋物線的準線上,O為坐標原點,設(shè)A(x1,y1),B(x2,y2).

(1)求證:y1y2=-p2;

(2)求證:直線MA、MF、MB的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:全優(yōu)設(shè)計選修數(shù)學-2-2蘇教版 蘇教版 題型:047

設(shè)拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A,B兩點,點C在拋物線的準線上,且BC∥x軸,證明直線AC經(jīng)過原點O.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省杭州學軍中學2009屆高三第十次月考數(shù)學(文)試題 題型:044

設(shè)拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A(x1,y1)、B(x2,y2)(y1>0,y2<0)兩點,M是拋物線的準線上的一點,O是坐標原點,若直線MA、MF、MB的斜率分別記為:kMA=a、kMF=b、kMB=c,(如圖)

(1)若y1y2=-4,求拋物線的方程;

(2)當b=2時,求證:a+c為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)拋物線y2=2px(p> 0)的焦點為F,經(jīng)過點F的直線交拋物線于A、B兩點.點C在拋物線的準線上,且BC∥x軸.證明直線 AC經(jīng)過原點O.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年云南省高二下學期期末考試理科數(shù)學卷 題型:填空題

設(shè)拋物線y2=2PxP>0)的焦點為F,點A(0,2).若線段FA的中點B在拋物線上,則B到該拋物線準線的距離為        .

 

查看答案和解析>>

同步練習冊答案