(本小題滿分10分)選修4-1:幾何證明講 如圖,AB是⊙O的直徑,弦BD、CA的延長(zhǎng)線相交于點(diǎn)E,EF垂直BA的延長(zhǎng)線于點(diǎn)F.
求證:(1);
(2)AB2=BE?BD-AE?AC.
(1)連結(jié)AD所以∠ADB=90°又EF⊥AB,∠EFA=90°則A、D、E、F四點(diǎn)共圓,∴∠DEA=∠DFA(2)由(1)知,BD?BE=BA?BF,又△ABC∽△AEF∴即:AB?AF=AE?AC
∴ BE?BD-AE?AC=BA?BF-AB?AF=AB(BF-AF)=AB2
【解析】
試題分析:(1) 連結(jié)AD
因?yàn)锳B為圓的直徑,所以∠ADB=90°,又EF⊥AB,∠EFA=90°
則A、D、E、F四點(diǎn)共圓
∴∠DEA=∠DFA
(2) 由(1)知,BD?BE=BA?BF
又△ABC∽△AEF
∴
即:AB?AF=AE?AC
∴ BE?BD-AE?AC
=BA?BF-AB?AF
=AB(BF-AF)
=AB2
考點(diǎn):平面幾何證明
點(diǎn)評(píng):與圓相關(guān)的證明角相等問(wèn)題結(jié)合圓中的性質(zhì),圓中相等的角構(gòu)成的相似三角形邊的長(zhǎng)度比例關(guān)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com