規(guī)定Cmx=,其中x∈R,m是正整數(shù),且Cx=1,這是組合數(shù)Cmn(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C3-15的值;
(2)設(shè)x>0,當(dāng)x為何值時(shí),取得最小值?
(3)組合數(shù)的兩個(gè)性質(zhì);
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推廣到Cmx(x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.
變式:規(guī)定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且Ax=1,這是排列數(shù)Anm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求A-153的值;
(2)排列數(shù)的兩個(gè)性質(zhì):①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數(shù))是否都能推廣到Axm(x∈R,m是正整數(shù))的情形?若能推廣,寫(xiě)出推廣的形式并給予證明;若不能,則說(shuō)明理由;
(3)確定函數(shù)Ax3的單調(diào)區(qū)間.
【答案】分析:(1)根據(jù)所給的組合數(shù)的推廣式子,把組合數(shù)中的數(shù)字代入公式,寫(xiě)出公式的表示式,最后做出結(jié)果.
(2)根據(jù)組合數(shù)的推廣式子,寫(xiě)出要求的結(jié)果,約分化簡(jiǎn)成最簡(jiǎn)形式,根據(jù)基本不等式求出式子的最小值,并求出取到最小值時(shí)對(duì)應(yīng)的x的值.
(3)由題意知第一個(gè)性質(zhì)不能推廣,第二個(gè)式子能夠推廣,第一個(gè)性質(zhì)只要舉出反例就能夠推翻,第二個(gè)式子可以進(jìn)行證明,寫(xiě)出組合數(shù)的表示形式,化簡(jiǎn)整理,得到等式成立.
變式(1)根據(jù)所給的排列數(shù)的推廣式子,把組合數(shù)中的數(shù)字代入公式,寫(xiě)出公式的表示式,最后做出結(jié)果
(2)兩個(gè)式子都能夠推廣,分別證明兩個(gè)性質(zhì)是成立的,當(dāng)n=1時(shí),驗(yàn)證式子左右兩邊相等,當(dāng)n不小于2時(shí)根據(jù)推廣的排列數(shù)公式證明,得到結(jié)論成立.
(3)根據(jù)排列數(shù)公式,寫(xiě)出排列數(shù)的代數(shù)形式,本題是一個(gè)關(guān)于自變量的3次函數(shù),要求單調(diào)區(qū)間需要對(duì)函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)與零的關(guān)系得到函數(shù)的單調(diào)性,得到函數(shù)的單調(diào)區(qū)間.
解答:解:(1)
(2)
∵x>0,x+≥2
當(dāng)且僅當(dāng)x=時(shí),等號(hào)成立.
∴當(dāng)x=時(shí),取得最小值.
(3)性質(zhì)①不能推廣,例如當(dāng)x=時(shí),有定義,但無(wú)意義;
性質(zhì)②能推廣,它的推廣形式是Cxm+Cxm-1=Cx+1m,m是正整數(shù).
事實(shí)上,當(dāng)m=1時(shí),有Cx1+Cx=x+1=Cx+11
當(dāng)m≥2時(shí).
==

變式:解:(Ⅰ)A-153=(-15)(-16)(-17)=-4080;
(Ⅱ)性質(zhì)①、②均可推廣,推廣的形式分別是:
①Axm=xAx-1m-1,②Axm+mAxm-1=Ax+1m(x∈R,m∈N+
事實(shí)上,在①中,當(dāng)m=1時(shí),左邊=Ax1=x,右邊=xAx-1=x,等式成立;
當(dāng)m≥2時(shí),左邊=x(x-1)(x-2)(x-m+1)
=x[(x-1)(x-2)((x-1)-(m-1)+1)]=xAx-1m-1,
因此,①Axm=xAx-1m-1成立;
在②中,當(dāng)m=1時(shí),左邊=Ax1+Ax=x+1=Ax+11=右邊,等式成立;
當(dāng)m≥2時(shí),
左邊=x(x-1)(x-2)(x-m+1)+mx(x-1)(x-2)(x-m+2)
=x(x-1)(x-2)(x-m+2)[(x-m+1)+m]=(x+1)x(x-1)(x-2)[(x+1)-m+1]=Ax+1m=右邊,
因此②Axm+mAxm-1=Ax+1m(x∈R,m∈N+)成立.
(Ⅲ)先求導(dǎo)數(shù),得(Ax3)′=3x2-6x+2.
令3x2-6x+2>0,解得x<或x>
因此,當(dāng)時(shí),函數(shù)為增函數(shù),
當(dāng)時(shí),函數(shù)也為增函數(shù).
令3x2-6x+2<0,解得<x<
因此,當(dāng)時(shí),函數(shù)為減函數(shù).
所以,函數(shù)Ax3的增區(qū)間為
函數(shù)Ax3的減區(qū)間為
點(diǎn)評(píng):本題考查組合數(shù)和排列數(shù)的公式的推廣,考查排列數(shù)和組合數(shù)的性質(zhì)在推廣以后是否適用,考查利用排列數(shù)和組合數(shù)的公式求解題的數(shù)值,考查函數(shù)的單調(diào)區(qū)間的求法,本題是一個(gè)綜合題目,也是一個(gè)易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且Cx0=1,這是組合數(shù)Cnm(n、m是正整數(shù),且m≤n)的一種推廣.
(1) 求C-155的值;
(2)組合數(shù)的兩個(gè)性質(zhì):①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m.是否都能推廣到Cxm(x∈R,m是正整數(shù))的情形?
若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定Cmx=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且C0x=1,這是組合數(shù)Cmn(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C3-15的值;
(2)設(shè)x>0,當(dāng)x為何值時(shí),
C
3
x
(C
1
x
)2
取得最小值?
(3)組合數(shù)的兩個(gè)性質(zhì);
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推廣到Cmx(x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.
變式:規(guī)定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且Ax0=1,這是排列數(shù)Anm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求A-153的值;
(2)排列數(shù)的兩個(gè)性質(zhì):①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數(shù))是否都能推廣到Axm(x∈R,m是正整數(shù))的情形?若能推廣,寫(xiě)出推廣的形式并給予證明;若不能,則說(shuō)明理由;
(3)確定函數(shù)Ax3的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且
C
0
x
=1
,這是組合數(shù)
C
m
n
(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求
C
3
-15
的值;
(2)設(shè)x>0,當(dāng)x為何值時(shí),
C
3
x
(
C
1
x
)
2
取得最小值?
(3)組合數(shù)的兩個(gè)性質(zhì);①
C
m
n
=
C
n-m
n
;②
C
m
n
+
C
m-1
n
=
C
m
n+1
.是否都能推廣到
C
m
x
(x∈R,m是正整數(shù))的情形?若能推廣,則寫(xiě)出推廣的形式并給出證明;若不能,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且CX0=1.這是組合數(shù)Cnm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求C-153的值;
(2)組合數(shù)的兩個(gè)性質(zhì):①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推廣到Cxm(x∈R,m∈N*)的情形?若能推廣,請(qǐng)寫(xiě)出推廣的形式并給予證明;若不能請(qǐng)說(shuō)明理由.
(3)已知組合數(shù)Cnm是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時(shí),Cxm∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案