精英家教網 > 高中數學 > 題目詳情
問題:過點M(2,1)作一斜率為1的直線交拋物線y2=2px(p>0)于不同的兩點A,B,且點M為AB的中點,求p的值.請閱讀某同學的問題解答過程:
設A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2
x1-x2
=1
,y1+y2=2,因此p=1.
并給出當點M的坐標改為(2,m)(m>0)時,你認為正確的結論:______.
設A(x1,y1),B(x2,y2),
則y12=2px1,y22=2px2
兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).
kAB=
y1-y2
x1-x2
=1
,y1+y2=2m
所以1=
2p
2m

所以p=m
因為
y2=2px
y-m=x-2
消去x得
y2-2py+2pm-4p=0
即y2-2my+2m2-4m=0
△=4m2-4(2m2-4m)>0
解得0<m<4
故答案為:p=m(0<m<4)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:閱讀理解

(2008•浦東新區(qū)二模)問題:過點M(2,1)作一斜率為1的直線交拋物線y2=2px(p>0)于不同的兩點A,B,且點M為AB的中點,求p的值.請閱讀某同學的問題解答過程:
解:設A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并給出當點M的坐標改為(2,m)(m>0)時,你認為正確的結論:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

科目:高中數學 來源:陜西省師大附中2012屆高三第四次模擬考試數學理科試題 題型:044

已知拋物線y2=4x,點M(1,0)關于y軸的對稱點為N,直線l過點M交拋物線于A,B兩點.

(1)證明:直線NA,NB的斜率互為相反數;

(2)求△ANB面積的最小值;

(3)當點M的坐標為(m,0),(m>0)且m≠1.根據(1)(2)推測并回答下列問題(不必說明理由):

①直線NA,NB的斜率是否互為相反數?

②△ANB面積的最小值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

問題:過點M(2,1)作一斜率為1的直線交拋物線y2=2px(p>0)于不同的兩點A,B,且點M為AB的中點,求p的值.請閱讀某同學的問題解答過程:
解:設A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又數學公式,y1+y2=2,因此p=1.
并給出當點M的坐標改為(2,m)(m>0)時,你認為正確的結論:________.

查看答案和解析>>

科目:高中數學 來源:2008年上海市浦東新區(qū)高考數學二模試卷(文科)(解析版) 題型:解答題

問題:過點M(2,1)作一斜率為1的直線交拋物線y2=2px(p>0)于不同的兩點A,B,且點M為AB的中點,求p的值.請閱讀某同學的問題解答過程:
解:設A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又,y1+y2=2,因此p=1.
并給出當點M的坐標改為(2,m)(m>0)時,你認為正確的結論:   

查看答案和解析>>

同步練習冊答案