【題目】已知曲線.

(1)當時,求曲線在處的切線方程;

2)過點作曲線的切線,若所有切線的斜率之和為1,求的值.

【答案】(I) ;(Ⅱ) .

【解析】試題分析:(1)根據(jù)曲線的解析式求出導函數(shù)的橫坐標代入導函數(shù)中即可求出切線的斜率根據(jù)點斜式可得切線的方程;(2)設出曲線過點切線方程的切點坐標,把切點的橫坐標代入到(1)求出的導函數(shù)中即可表示出斜率,根據(jù)切點坐標和表示出的斜率,寫出切線的方程,把的坐標代入切線方程即可得到關于切點橫坐標的方程,解方程方即可得到切點橫坐標的值,分別代入所設的切線方程即可的結果.

試題解析:()當a1時, ,f'x)=x21,

∴kf'2)=413

,

所以切線方程為,整理得9x3y100

)設曲線的切點為(x0y0),則

所以切線方程為

又因為切點x0,y0)既在曲線fx)上,又在切線上,所以聯(lián)立得

可得x00x03,

所以兩切線的斜率之和為a+(9a)=92a1,∴a4

【方法點晴】本題主要考查導數(shù)的幾何意義、利用導數(shù)求曲線切線,屬于中檔題.求曲線切線方程的一般步驟是:(1)求出處的導數(shù),即在點 出的切線斜率(當曲線處的切線與軸平行時,在 處導數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)當x為何值時,f(logax)有最小值?求出該最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2 . (Ⅰ)判斷f(x)奇偶性并證明;
(Ⅱ)用單調性定義證明函數(shù)g(x)= 在函數(shù)f(x)定義域內單調遞增,并判斷f(x)=log2 在定義域內的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若α∈[0,π],β∈[﹣ , ],λ∈R,且(α﹣ 3﹣cosα﹣2λ=0,4β3+sinβcosβ+λ=0,則cos( +β)的值為(
A.0
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點,且角φ的終邊經(jīng)過點P(1,﹣ ),若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)若方程3[f(x)]2﹣f(x)+m=0在x∈( , )內有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各式中,正確的是( 。
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若集合A={x|kx2﹣2x﹣1=0}只有一個元素,則實數(shù)k的取值集合為(
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1,C2的極坐標方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點O)三點A,B,C.

)求證: ;

)當時,求點B到曲線C2上的點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)求的單調區(qū)間;

(Ⅱ)若恒成立,求參數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案