已知函數(shù)數(shù)學(xué)公式在(-∞,+∞)總是單調(diào)函數(shù),則a的取值范圍是________.

a≥1
分析:先求函數(shù)的導(dǎo)數(shù),因?yàn)楹瘮?shù)在(-∞,+∞)上是單調(diào)函數(shù),所以在(-∞,+∞)上y′≥0恒成立,再利用一元一次不等式的解得到a的取值范圍即可.
解答:函數(shù)的導(dǎo)數(shù)為y′=x2+2x+a,
∵函數(shù)在(-∞,+∞)上是單調(diào)函數(shù),
∴在(-∞,+∞)上y′≥0恒成立,
即x2+2x+a≥0恒成立,∴△=4-4a≤0,解得a≥1,
∴實(shí)數(shù)a的取值范圍是a≥1.
故答案為:a≥1.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)區(qū)間,掌握函數(shù)恒成立時(shí)所取的條件,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、(理)已知函數(shù)在f(x)=logsin1(x2-6x+5)在(a,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)在定義域(-∞,4]上為減函數(shù),且f(m-sinx)≤f(
1+2m
-
7
4
+cos2x)
對(duì)于任意的x∈R成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)在分別寫有2,3,4,5,7,8的六張卡片中任取2張,把卡片上的數(shù)字組成一個(gè)分?jǐn)?shù),則所得的分?jǐn)?shù)是最簡(jiǎn)分?jǐn)?shù)的概率為
4
5
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)在R上為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2-2x,則y=f(x)在R上的解析式為
f(x)=
x2-2x,x≥0
-x2-2x,x<0
f(x)=
x2-2x,x≥0
-x2-2x,x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)在R上可導(dǎo),且f′(-1)=2,則
lim
△x→0
f(-1-△x)-f(-1)
△x
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案