已知雙曲線的漸近線方程為3x±4y=0,并且經(jīng)過點M(1,3),求雙曲線的標(biāo)準(zhǔn)方程.
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:將雙曲線的方程設(shè)為9x2-16y2=λ(λ≠0),將點的坐標(biāo)代入可得λ的值,進而可得答案.
解答: 解:設(shè)雙曲線方程:9x2-16y2=λ(λ≠0),
∵雙曲線經(jīng)過點(1,3),
∴λ=9-16×9=-135,
∴所求方程為
y2
135
16
-
x2
15
=1
點評:本題考查雙曲線的方程,涉及雙曲線的方程與其漸近線的方程之間的關(guān)系,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為2的正方體ABCD-A1B1C1D1中,點E是棱CC1中點
(1)求異面直線BC與AE所成角的余弦值;
(2)求證:AC∥平面B1DE;
(3)求三棱錐A-B1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax3+bx2-3x+c在x=-1時有極大值6,在x=1時有極小值,求a,b,c的值;并求f(x)在區(qū)間[-2,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a3=6,S4=20,等比數(shù)列{bn}中,b3=a2,b4=a4,
(1)求數(shù)列{an}的通項an;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡求值:
(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)
sin3(
π
2
+α)+cos3(
2
-α)
sin(3π+α)+cos(4π-α)
-sin(
2
+α)cos(
2
+α)
(3)已知α是第三角限的角,化簡
1+sinα
1-sinα
-
1-sinα
1+sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax(a>0且a≠1)經(jīng)過點(2,4).
(1)求a的值;
(2)求y=a2x+2ax-1在[0,1]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解一大片經(jīng)濟林生長情況,隨機測量其中的60株的底部周長(單位:cm),規(guī)定底部周長60cm及以上優(yōu)質(zhì)樹木)將周長整理后畫出的頻率分布表和頻率分布直方圖如圖:觀察圖形,回答下列問題:
組距頻數(shù)頻率
[39.5,49.5)   60.1
[49.5,59.5)0.15
[59.5,69.5)9
[69.5,79.5)18
[79.5,89.5)0.25
[89.5,99.5)30.05
合計
(1)補充上面的頻率分布表和頻率分布直方圖.(填充部分用陰影表示)
(2)估計這片經(jīng)濟林中樹木的優(yōu)質(zhì)率是多少?(周長60cm及以上優(yōu)質(zhì)樹木).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式為an=
1
n+1
+
n
,已知它的前n項和Sn=6,則項數(shù)n等于:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+
1
x
,x>0
3+ex,x≤0
的最小值為
 
;函數(shù)f(x)與直線y=4的交點個數(shù)是
 
個.

查看答案和解析>>

同步練習(xí)冊答案