已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.求證:

(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.
(1)見解析(2)見解析
證明:(1)∵四邊形ABCD是等腰梯形,∴AC=DB.
∵AB=DC,BC=CB,∴△ABC≌△BCD.
(2)∵△ABC≌△BCD,
∴∠ACB=∠DBC,∠ABC=∠DCB,
∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC.
∵ED∥AC,∴∠EDA=∠DAC,
∴∠EDA=∠DBC,∠EAD=∠DCB.
∴△ADE∽△CBD.
∴DE∶BD=AE∶CD,
∴DE·DC=AE·BD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長線交圓O于N,點(diǎn)是線段延長線上一點(diǎn),連接PN,且滿足

(Ⅰ)求證:是圓O的切線;
(Ⅱ)若圓O的半徑為,OA=OM,求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,△ABC≌△BAD.求證:AB∥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正三角形ABC外接圓的半徑為1,點(diǎn)M、N分別是邊AB、AC的中點(diǎn),延長MN與△ABC的外接圓交于點(diǎn)P,求線段NP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P在圓O直徑AB的延長線上,且PB=OB=2,PC切圓O于C點(diǎn),CD⊥AB于D點(diǎn),求PC和CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,圓的直徑,為圓周上一點(diǎn),,過作圓的切線,則點(diǎn)到直線的距離___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圓的弦ED,CB的延長線交于點(diǎn)A,若BDAE,AB=4,BC=2,AD=3,則CE=      ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在圓O中,直徑AB與弦CD垂直,垂足為E,,垂足為F,若,,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,DE∥BC,EF∥CD.且AB=2,AD=,求AF的長.

查看答案和解析>>

同步練習(xí)冊答案