(本小題滿分10分)
已知向量,函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,分別是角的對邊,且,求面積的最大值.
(1)的單調(diào)遞增區(qū)間為
(2)當(dāng)且僅當(dāng)時(shí),取得最大值.
解析試題分析:(1)
,
由
得,
所以的單調(diào)遞增區(qū)間為
(2)由得,,即.
由余弦定理得,
,
當(dāng)且僅當(dāng)時(shí),取得最大值.
考點(diǎn):本題主要考查平面向量的坐標(biāo)運(yùn)算,余弦定理的應(yīng)用,和差倍半的三角函數(shù)公式,三角函數(shù)圖象和性質(zhì)。
點(diǎn)評:中檔題,其中(I)解答思路比較明確,關(guān)鍵是準(zhǔn)確進(jìn)行向量的坐標(biāo)運(yùn)算,并運(yùn)用三角公式化簡,進(jìn)一步研究函數(shù)的單調(diào)區(qū)間。(II)則靈活運(yùn)用余弦定理并運(yùn)用正弦函數(shù)的有界性,確定得到三角形面積的最大值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在一個(gè)周期內(nèi)的圖像下圖所示。
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù),
(1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)求單調(diào)增減區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的最大值2,其圖象相鄰兩條對稱軸之間的距離為。
(1)求的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
已知,,滿足.
(1)將表示為的函數(shù),并求的最小正周期;
(2)已知分別為的三個(gè)內(nèi)角對應(yīng)的邊長,若對所有恒成立,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,. 記(其中都為常數(shù),且).
(Ⅰ)若,,求的最大值及此時(shí)的值;
(Ⅱ)若,①證明:的最大值是;②證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個(gè)銳角,它們的終邊分別與單位圓相交于A、B兩點(diǎn),已知A、B的橫坐標(biāo)分別為.
(1)求的值; (2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com