【選做題】在A、B、C、D四小題中只能選做兩題,每小題l0分,共計(jì)20分.請(qǐng)?jiān)?u>答題卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

A.選修4 – 1幾何證明選講

如圖,△ABC的外接圓的切線AEBC的延長(zhǎng)線相交于點(diǎn)E,

BAC的平分線與BC交于點(diǎn)D.

求證:ED2= EB·EC.

 

 

 

 

 

B.矩陣與變換

已知矩陣,,求滿足的二階矩陣

 

 

 

 

 

 

C.選修4 – 4 參數(shù)方程與極坐標(biāo)

若兩條曲線的極坐標(biāo)方程分別為r = 1與r = 2cos( + ),它們相交于A,B兩點(diǎn),求線段AB的長(zhǎng).

 

 

 

 

 

 

D.選修4 – 5 不等式證明選講

設(shè)a,b,c為正實(shí)數(shù),求證:a3 + b3 + c3 + ≥2.

 

 

 

 

 

【答案】

 【選做題】在A、B、C、D四小題中只能選做兩題,每小題l0分,共計(jì)20分.請(qǐng)?jiān)?u>答題卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

A.選修4 – 1幾何證明選講

證明: 因?yàn)?i>EA是圓的切線,AC為過切點(diǎn)A的弦,所以

ÐCAE = ÐCBA.

又因?yàn)?i>AD是ÐBAC的平分線,所以ÐBAD = ÐCAD

所以ÐDAE = ÐDAC + ÐEAC = ÐBAD + ÐCBA = ÐADE

所以,△EAD是等腰三角形,所以EA = ED. ……………………………………………………6分

EA2 = EC·EB,

所以ED2 = EB·EC. ……………………………………………………………………………4分

B.矩陣與變換:

解:由題意得,…………………………………………………5分

,………………………………………10分

C.選修4 – 4 參數(shù)方程與極坐標(biāo)

 若兩條曲線的極坐標(biāo)方程分別為r = 1與r = 2cos( + ),它們相交于A,B兩點(diǎn),求線段AB的長(zhǎng).

解 首先將兩曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,得

x2 + y2 = 1與x2 + y2x + y = 0……………………………………………………6分

解方程組得兩交點(diǎn)坐標(biāo)(1,0),(–, – )

所以,線段AB的長(zhǎng)為=  

AB = .………………………………………………………………………………10分

D.選修4 – 5 不等式證明選講

設(shè)a,b,c為正實(shí)數(shù),求證:a3 + b3 + c3 + ≥2.

證明 因?yàn)?i>a,b,c為正實(shí)數(shù),所以a3 + b3 + c3≥3 = 3abc>0…………………………5分

又3abc + ≥2 = 2.

所以a3 + b3 + c3 + ≥2.…………………………………………………………………10分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
),若直線l過點(diǎn)P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1 幾何證明選講
如圖,⊙O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
B.選修4-2 矩陣與變換
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.
C.選修4-4 坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,
曲線C1ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
D.選修4-5 不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選做題】在A、B、C、D四小題中只能選做兩題,每小題l0分,共計(jì)20分.請(qǐng)?jiān)?u>答題卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

A.選修4 – 1幾何證明選講

如圖,△ABC的外接圓的切線AEBC的延長(zhǎng)線相交于點(diǎn)E,

BAC的平分線與BC交于點(diǎn)D.

求證:ED2= EB·EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市海門中學(xué)高三(上)開學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓+=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,),若直線l過點(diǎn)P,且傾斜角為 ,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案