△ABC中,“acosA=bcosB”是“△ABC為直角三角形”的( 。
A.充分不必要條件B.必要不充分條件
C.充分且必要條件D.既不充分也不必要條件
由正弦定理可知acosA=bcosB,化為sinAcosA=sinBcosB,
所以sin2A=sin2B,因為A,B是三角形內(nèi)角,所以2A=2B或2A=π-2B,
即A=B或A+B=
π
2
,
所以△ABC中,“acosA=bcosB”是“△ABC為直角三角形”的必要不充分條件;
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,acosA=bcosB,則三角形的形狀為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,acosA=bcosB,則△ABC的形狀為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列一些說法:
(1)已知△ABC中,acosB=bcosA,則△ABC為等腰或直角三角形.
(2)已知△ABC中,acosA=bcosB,則△ABC為等腰或直角三角形.
(3)已知數(shù)列{an}滿足
a
2
n+1
a
2
n
=p(p為正常數(shù),n∈N*),則稱{an}為“等方比數(shù)列”.若數(shù)列{an}是等方比數(shù)列則數(shù)列{an}必是等比數(shù)列.
(4)等比數(shù)列{an}的前3項的和等于首項的3倍,則該等比數(shù)列的公比為-2.
其中正確的說法的序號依次是
(2)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,“acosA=bcosB”是“△ABC為直角三角形”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,acosA=bcosB,則△ABC一定是(    )

A.等邊三角形                 B.等腰三角形

C.直角三角形                 D.等腰三角形或直角三角形

查看答案和解析>>

同步練習(xí)冊答案