精英家教網 > 高中數學 > 題目詳情

設函數f(x)=x3-4x+3+lnx(x>0),則y=f(x)


  1. A.
    在區(qū)間(0,數學公式),(數學公式,2)內均無零點
  2. B.
    在區(qū)間(0,數學公式),(數學公式,2)內均有零點
  3. C.
    在區(qū)間(0,數學公式)內無零點,在區(qū)間(數學公式,2)內有零點
  4. D.
    在區(qū)間(0,數學公式)內有零點,在區(qū)間(數學公式,2)內無零點
B
分析:先求出f(),與f(1)的值,然后根據函數值的符號和函數零點的判定定理可得結論.
解答:∵f(x)=x3-4x+3+lnx(x>0),
∴f()=-2+3-ln2=-ln2>0,f(1)=1-4+3=0
當x→0時,f(x)<0
∴在區(qū)間(0,)內有零點,在區(qū)間(,2)內有零點
故選B.
點評:本題主要考查了函數零點的判定定理,以及函數值的求解,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

18、設函數f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)討論函數f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x3+ax2+x+1,a∈R.
(1)若x=1時,函數f(x)取得極值,求函數f(x)的圖象在x=-1處的切線方程;
(2)若函數f(x)在區(qū)間(
12
,1)
內不單調,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x3+ax2-a2x+5(a>0)
(1)當函數f(x)有兩個零點時,求a的值;
(2)若a∈[3,6],當x∈[-4,4]時,求函數f(x)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數在(1,f(1))處的切線方程;
(Ⅱ)函數f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x3•cosx+1,若f(a)=5,則f(-a)=
 

查看答案和解析>>

同步練習冊答案