(本小題滿分12分定義在R上的函數(shù)滿足,當(dāng)時(shí),.

 

(1)求的值;

(2)比較的大小.

 

【答案】

解:(1)∵在R上滿足,∴,∴

,從而,∴,∴,∴

(2)由(1)可知

,∴

,∴

,∴,∴

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆新疆喀什二中高二下期中文科數(shù)學(xué)(1、3、4部)(解析版) 題型:解答題

(本小題滿分12分)

某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出.當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.

(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?

(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省豫南九校高三第四次聯(lián)考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過(guò)點(diǎn),直線交橢圓于不同的兩點(diǎn)A,B.(Ⅰ)求橢圓的方程;

(Ⅱ)求的取值范圍;(Ⅲ)若直線不過(guò)點(diǎn)M,試問(wèn)是否為定值?并說(shuō)明理由。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

已知直線過(guò)拋物線的焦點(diǎn)且與拋物線相交于兩點(diǎn),自向準(zhǔn)線作垂線,垂足分別為 

(Ⅰ)求拋物線的方程;

(Ⅱ)證明:無(wú)論取何實(shí)數(shù)時(shí),,都是定值;

(III)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省?谑懈呷呖颊{(diào)研考試?yán)砜茢?shù)學(xué) 題型:解答題

((本小題滿分12分)

如圖,已知兩定點(diǎn)和定直線,動(dòng)點(diǎn)在直線上的射影為,且

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程并畫(huà)草圖;

(Ⅱ)是否存在過(guò)點(diǎn)的直線,使得直線與曲線相交于, 兩點(diǎn),且△的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省宜賓市高三第二次診斷性測(cè)試數(shù)學(xué)理卷 題型:解答題

((本小題滿分12分)

已知點(diǎn)A(1,1)是橢圓上一點(diǎn),F(xiàn)1、F2是橢圓的兩焦點(diǎn),且滿足|AF1|+|AF2|=4。

   (I)求橢圓的標(biāo)準(zhǔn)方程;

   (II)過(guò)點(diǎn)A(1,1)與橢圓相切的直線方程;

   (III)設(shè)點(diǎn)C、D是橢圓上兩點(diǎn),直線AC、AD的傾斜角互補(bǔ),試判斷直線CD的斜率是否為定值?若是定值,求出定值;若不是定值,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案