在等差數(shù)列{an}中,a2+a8+a14=9,則S15=
45
45
分析:由條件利用等差數(shù)列的性質(zhì)可得 a8=3,再根據(jù)S15=
15(a1+a15)
2
=15a8,運(yùn)算求得結(jié)果.
解答:解:由等差數(shù)列的性質(zhì)可得a2+a8+a14=3a8=9,∴a8=3,
∴S15=
15(a1+a15)
2
=15a8=45,
故答案為 45.
點(diǎn)評:本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的前n項(xiàng)和公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項(xiàng)的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個根,那么使得前n項(xiàng)和Sn為負(fù)值的最大的n的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習(xí)冊答案