命題P:“?x∈R,x2+1<2x”,¬P為
(填“真”“假”中一個字)命題.
分析:由命題¬p是真命題,我們可得命題p是假命題,我們可以先假定命題p是真命題,求出參數(shù)a的范圍,再求出a的范圍的補(bǔ)集,即可得到實(shí)數(shù)a的取值范圍.
解答:解:因?yàn)槊}P:“?x∈R,x2+1<2x”,∴命題¬p:“?x∈R,x2+1≥2x”,即“?x∈R,(x-1)2≥0”,
∴¬p是真命題,故答案為真
點(diǎn)評:對命題“?x∈A,P(X)”的否定是:“?x∈A,?P(X)”;對命題“?x∈A,P(X)”的否定是:“?x∈A,?P(X)”,即對特稱命題的否定是一個全稱命題,對一個全稱命題的否定是特稱命題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、已知命題p:?x∈R,x2+1>0.則?p是
?x0∈R,x02+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、已知命題p:?x∈R,x2-x+1>0,則-p( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•汕頭一模)有以下四個命題:
①△ABC中,“A>B”是“sinA>sinB”的充要條件;
②若命題p:?x∈R,sinx≤1,則?p:?x∈R,sinx>1;
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個函數(shù)y=x-1,y=x
1
2
,y=x
1
3
,y=x3,其中在(0,+∞)上是增函數(shù)的函數(shù)有3個.
其中真命題的序號是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,2x<3x;命題q:?x0∈R,x03<1下列命題中為真命題是( 。

查看答案和解析>>

同步練習(xí)冊答案