【題目】若數(shù)列{an}滿足:a1=1,an+1=ran+r(n∈N* , 實數(shù)r是非零常數(shù)),則“r=1”是“數(shù)列{an}是等差數(shù)列”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
【答案】A
【解析】解:當(dāng)r=1時,等式an+1=ran+r化為an+1=an+1,即an+1﹣an=1(n∈N*).
所以,數(shù)列{an}是首項a1=1,公差為1的等差數(shù)列;
“r=1”是“數(shù)列{an}成等差數(shù)列”的充分條件,
當(dāng)r不等于1時,
由an+1=ran+r= ﹣ ,得an+1+ =r(an+ )
所以,數(shù)列{an+ }是首項為 ,公比為r的等比數(shù)列
所以,an+ = rn﹣1 ,
當(dāng)r= 時,an=1.{an}是首項為1,公差為0的等差數(shù)列.
因此,“r=1”不是“數(shù)列{an}成等差數(shù)列”的必要條件.
綜上可知,“r=1”是“數(shù)列{an}成等差數(shù)列”的充分但不必要條件.
故選A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果數(shù)列a1 , a2 , a3 , … , an , …是等差數(shù)列,那么下列數(shù)列中不是等差數(shù)列的是:( )
A.a1+x , a2+x , a3+x , …,an+x ,
B.ka1 , ka2 , ka3 , …,kan ,
C.
D.a1 , a4 , a7 , …a3n﹣2 ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|3+2x﹣x2>0},N={x|x>a},若MN,則實數(shù)a的取值范圍是( )
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,已知a1= ,an+1= an﹣ ,n∈N* , 設(shè)Sn為{an}的前n項和.
(1)求證:數(shù)列{3nan}是等差數(shù)列;
(2)求Sn;
(3)是否存在正整數(shù)p,q,r(p<q<r),使Sp , Sq , Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M為PC的中點.
(1)求異面直線AP,BM所成角的余弦值;
(2)點N在線段AD上,且AN=λ,若直線MN與平面PBC所成角的正弦值為 ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
(1)求回歸直線方程.
(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)
參考數(shù)據(jù)如下:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (t為參數(shù)).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4 sinθ. (Ⅰ)將C2的方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)C1 , C2交于A,B兩點,點P的坐標(biāo)為 ,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P( , )在橢圓E: + =1(a>b>0)上,F(xiàn)為右焦點,PF垂直于x軸,A,B,C,D為橢圓上四個動點,且AC,BD交于原點O.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2),滿足 = ,判斷kAB+kBC的值是否為定值,若是,求出此定值,并求出四邊形ABCD面積的最大值,否則請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com