若復(fù)數(shù)Z=a2-1+(a-1)i(其中a∈R)為純虛數(shù),則復(fù)數(shù)
1+ai
2+3i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于(  )
A、第二或第三象限
B、第三或第四象限
C、第三象限
D、第四象限
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由純虛數(shù)的定義求出a,再利用兩個復(fù)數(shù)代數(shù)形式的乘除法法則,虛數(shù)單位i的冪運(yùn)算性質(zhì),化簡復(fù)數(shù)
1+ai
2+3i
,可得此復(fù)數(shù)對應(yīng)點(diǎn)所在的象限.
解答: 解:復(fù)數(shù)Z=a2-1+(a-1)i 為純虛數(shù),∴a2-1=0,且a-1≠0,∴a=-1.
則復(fù)數(shù)
1+ai
2+3i
=
1-i
(2+3i)
=
(1-i)(2-3i)
(2+3i)(2-3i)
=-
1
13
+
-5
13
i,
故復(fù)數(shù)
1+ai
2+3i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為(-
1
13
,-
5
13
),在第三象限,
故選:C.
點(diǎn)評:本題主要考查純虛數(shù)的定義,復(fù)數(shù)代數(shù)形式的混合運(yùn)算,復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點(diǎn)之間的關(guān)系
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算機(jī)執(zhí)行如圖所示的算法程序,如果輸入的z∈[0,3],則輸出的y值的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i
1+i
(i是虛數(shù)單位)的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x+y-3≥0
x-y+1≥0
x≤2
表示的平面區(qū)域的面積是( 。
A、0.25B、0.5C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在復(fù)平面中,復(fù)數(shù)z1、z2分別對應(yīng)點(diǎn)A、B,則|z1|•
.
z2
=(  )
A、2
5
-
5
i
B、2
5
+
5
i
C、3-i
D、4+3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=
m+i
1-i
(i為虛數(shù)單位)為實(shí)數(shù),則實(shí)數(shù)m=( 。
A、0B、-1C、-1或1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項式(x+1)8(x-1)展開式中x5的系數(shù)是(  )
A、-14B、14
C、-28D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|y=ln(3x-1)},B={y|y=sin(x+2)},則(∁UA)∩B=( 。
A、(
1
3
,+∞)
B、(0,
1
3
]
C、[-1,
1
3
]
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a>0)

(1)設(shè)0<a<1,試討論f(x)單調(diào)性;
(2)設(shè)g(x)=x2-2bx+4,當(dāng)a=
1
4
時,若?x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案