已知圓.
(1)已知不過(guò)原點(diǎn)的直線與圓相切,且在軸,軸上的截距相等,求直線的方程;
(2)求經(jīng)過(guò)原點(diǎn)且被圓截得的線段長(zhǎng)為2的直線方程.
(1);(2).

試題分析:(1)先設(shè)直線的方程,確定圓心的坐標(biāo)及半徑,進(jìn)而由圓心到直線的距離等于半徑計(jì)算出參數(shù)的值,從而可寫(xiě)出直線的方程;(2)先檢驗(yàn)所求直線的斜率不存在時(shí),是否滿足要求;然后設(shè)所求直線方程,根據(jù)弦長(zhǎng)為2,圓的半徑,確定圓心到直線的距離, 最后運(yùn)用點(diǎn)到直線的距離公式得,從中求解即可得到,進(jìn)而寫(xiě)出直線的方程,最后綜合兩種情況寫(xiě)出所求的直線方程即可.
試題解析:(1)∵切線在兩坐標(biāo)軸上截距相等且不為零
設(shè)直線方程為                          1分
由圓可得
∴圓心到切線的距離等于圓半徑                  3分
=                                4分
                                5分
所求切線方程為:      6分
當(dāng)直線斜率不存在時(shí),直線即為軸,此時(shí),交點(diǎn)坐標(biāo)為,線段長(zhǎng)為2,符合
故直線                                  8分
當(dāng)直線斜率存在時(shí),設(shè)直線方程為,即
由已知得,圓心到直線的距離為1                         9分
                              11分
直線方程為
綜上,直線方程為                        12分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線與圓的位置關(guān)系是
A.相交B.相切C.相離D.與值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)直線x+y-2=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;
(2)圓C是否過(guò)定點(diǎn)?如果過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

的圓心到直線的距離    ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)直線xy-2 =0上點(diǎn)P作圓x2y2=1的兩條切線,若兩條切線的夾角是60°,則點(diǎn)P的坐標(biāo)是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知圓的方程為.設(shè)該圓過(guò)點(diǎn)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為(   )
A.10       B.20C.30      D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)M(a,b)在圓O:x2+y2=1外,則直線ax+by=1與圓O的位置關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線與圓相交于M,N兩點(diǎn),若,則的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案