(2008•黃岡模擬)已知x、y滿足約束條件
x≥0
y≥0
x+2y-4≤0
2x+y-1≥0
,則z=3x+y的最小值是
1
1
分析:作出不等式組表示的平面區(qū)域,由z=3x+y可得y=-3x+z,則z表示直線y=-3x+z在y軸上的截距,截距越小,z越小,結(jié)合圖象可求z的最小值
解答:解:作出不等式組表示的平面區(qū)域,如圖所示的陰影部分
由z=3x+y可得y=-3x+z,則z表示直線y=-3x+z在y軸上的截距,截距越小,z越小
由題意可得,當y=-3x+z經(jīng)過點A(0,1)時,z最小
此時Z=1
故答案為:1
點評:本題主要考查了線性目標函數(shù)在線性約束條件 下的最值的求解,解題的關(guān)鍵是明確z的幾何意義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2008•黃岡模擬)在四棱錐P-ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(1)求證:平面PAC⊥平面PBD;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•黃岡模擬)已知等式(1+x-x23•(1-2x24=a0+a1x+a2x2+…+a14x14成立,則a1+a2+a3+…+a13+a14的值等于
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•黃岡模擬)不等式|x|•(1-3x)>0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•黃岡模擬)已知直線x+y-1=0與橢圓
x2
a2
+
y2
b2
=1
(a>b>0)相交于A、B兩點,M是線段AB上的一點,
AM
=-
BM
,且點M在直線l:y=
1
2
x
上,
(1)求橢圓的離心率;
(2)若橢圓的焦點關(guān)于直線l的對稱點在單位圓x2+y2=1上,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•黃岡模擬)若全集U=R,集合A={x|1-x<0},B={x|x2-2x≤0},則A∩B=( 。

查看答案和解析>>

同步練習冊答案