(本小題滿分12分)
某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:.

(1)求圖中x的值;
(2)從成績不低于80分的學(xué)生中按分層抽樣抽取4人,選其中2人為數(shù)學(xué)課代表,求這兩個人的數(shù)學(xué)成績不在同一分?jǐn)?shù)段的概率。
(1)x=0.018(2)

試題分析:(1)
得x=0.018 ………………………………………………………4分
(2)由已知得,在[80,90)有9人,[90,100)有3人,按照分層抽樣抽取4人
依3:1的比例可得,在[80,90)有3人,[90,100)有1人………………………8分
這4人分別記為,。這4人中任取2人的取法有()(,),(,)()(,)()…………………10分
這兩個人的數(shù)學(xué)成績不在同一分?jǐn)?shù)段的概率P=
點(diǎn)評:根據(jù)直方圖的特點(diǎn),方形的面積代表頻率,進(jìn)而利用各個方形的面積和為1,得到x的取值。同時能結(jié)合分層抽樣的方法,等比例性得到各個區(qū)間的抽取人數(shù),然后利用古典概型概率的公式來求解,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)為了研究化肥對小麥產(chǎn)量的影響,某科學(xué)家將一片土地劃分成200個的小塊,并在100個小塊上施用新化肥,留下100個條件大體相當(dāng)?shù)男K不施用新化肥.下表1和表2分別是施用新化肥和不施用新化肥的小麥產(chǎn)量頻數(shù)分布表(小麥產(chǎn)量單位:kg)
表1:施用新化肥小麥產(chǎn)量頻數(shù)分布表
小麥產(chǎn)量





頻數(shù)
10
35
40
10
5
表2:不施用新化肥小麥產(chǎn)量頻數(shù)分布表
小麥產(chǎn)量




頻數(shù)
15
50
30
5
(10)     完成下面頻率分布直方圖;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計施用化肥和不施用化肥的一小塊土地的小麥平均產(chǎn)量;
(3)完成下面2×2列聯(lián)表,并回答能否有99.5%的把握認(rèn)為“施用新化肥和不施用新化肥的小麥產(chǎn)量有差異”
表3:
 
小麥產(chǎn)量小于20kg
小麥產(chǎn)量不小于20kg
合計
施用新化肥


 
不施用新化肥


 
合計
 
 

 
附:

0.050
0.010
0.005
0.001

3.841
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制,均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖中的信息,回答下列問題.

(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;
(Ⅱ)根據(jù)頻率分布直方圖,估計本次考試的平均分;
(Ⅲ)若從60名學(xué)生中隨機(jī)抽取2人,抽到的學(xué)生成績在[40,70)記0分,記[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某大學(xué)高等數(shù)學(xué)老師上學(xué)期分別采用了兩種不同的教學(xué)方式對甲、乙兩個大一新生班進(jìn)行教改試驗(yàn)(兩個班人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F(xiàn)隨機(jī)抽取甲、乙兩班各20名同學(xué)的上學(xué)期數(shù)學(xué)期末考試成績,得到莖葉圖如下:

(Ⅰ)依莖葉圖判斷哪個班的平均分高?
(Ⅱ)從乙班這20名同學(xué)中隨機(jī)抽取兩名高等數(shù)學(xué)成績不得低于85分的同學(xué),求成績?yōu)?0分的同學(xué)被抽中的概率;
(Ⅲ)學(xué)校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824004625723371.png" style="vertical-align:middle;" />列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認(rèn)為成績優(yōu)秀與教學(xué)方式有關(guān)?”
 
甲班
乙班
合計
優(yōu)秀
 
 
 
不優(yōu)秀
 
 
 
合計
 
 
 
下面臨界值表僅供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:其中) 
(Ⅳ)從乙班高等數(shù)學(xué)成績不低于85分的同學(xué)中抽取2人,成績不低于90分的同學(xué)得獎金100元,否則得獎金50元,記為這2人所得的總獎金,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
甲、乙兩臺機(jī)床生產(chǎn)同一型號零件.記生產(chǎn)的零件的尺寸為(cm),相關(guān)行業(yè)質(zhì)檢部門規(guī)定:若,則該零件為優(yōu)等品;若,則該零件為中等品;其余零件為次品.現(xiàn)分別從甲、乙機(jī)床生產(chǎn)的零件中各隨機(jī)抽取50件,經(jīng)質(zhì)量檢測得到下表數(shù)據(jù):
尺寸






甲機(jī)床零件頻數(shù)
2
3
20
20
4
1
乙機(jī)床零件頻數(shù)
3
5
17
13
8
4
(Ⅰ)設(shè)生產(chǎn)每件產(chǎn)品的利潤為:優(yōu)等品3元,中等品1元,次品虧本1元. 若將頻率視為概率,試根據(jù)樣本估計總體的思想,估算甲機(jī)床生產(chǎn)一件零件的利潤的數(shù)學(xué)期望;
(Ⅱ)對于這兩臺機(jī)床生產(chǎn)的零件,在排除其它因素影響的情況下,試根據(jù)樣本估計總體的思想,估計約有多大的把握認(rèn)為“零件優(yōu)等與否和所用機(jī)床有關(guān)”,并說明理由.
參考公式:.
參考數(shù)據(jù):

0.25
0.15
0.10
0.05
0.025
0.010

1.323
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某工廠對一批產(chǎn)品進(jìn)行了抽樣檢測.圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是(        ).
A.90B.75C. 60D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了了解中學(xué)生的體能情況,抽取了某中學(xué)同年級部分學(xué)生進(jìn)行跳繩測試,將所得的數(shù)據(jù)整理后畫出頻率分布直方圖(如下圖),已知圖中從左到右的前三個小組的頻率分別是0.1,0.3,0.4.第一小組的頻數(shù)是5.

(1) 求第四小組的頻率和參加這次測試的學(xué)生人數(shù);
(2) 在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?
(3) 參加這次測試跳繩次數(shù)在100次以上為優(yōu)秀,試估計該校此年級跳繩成績的優(yōu)秀率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從一堆蘋果中任取20個,并得到它們的質(zhì)量(單位:克)數(shù)據(jù)分布表如下:
分組
[90,100)
[100,110)
[110,120)
[120,130)
[130,140)
[140,150)
頻數(shù)
1
2
3
10
3
1
則這堆蘋果中,質(zhì)量不小于120克的蘋果數(shù)占蘋果總數(shù)的        %.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙兩同學(xué)5次綜合測評的成績?nèi)缜o葉圖所示.老師在 計算甲、乙兩人平均分時,發(fā)現(xiàn)乙同學(xué)成績的一個數(shù)字無法看清.若從隨機(jī)取一個數(shù)字代替,則乙的平均成績超過甲的平均成績的概率為             .

查看答案和解析>>

同步練習(xí)冊答案