如圖,直線交圓于兩點(diǎn),是直徑,平分,交圓于點(diǎn), 過(guò)作丄于.
(1)求證:是圓的切線;
(2)若,求的面積
(1)連結(jié)OD,則OA=OD,所以∠OAD=∠ODA.,然后利用∠EDA+∠ODA=90°,即DE⊥OD來(lái)得到證明。
(2)54.
【解析】
試題分析:(Ⅰ)連結(jié)OD,則OA=OD,所以∠OAD=∠ODA.
因?yàn)椤螮AD=∠OAD,所以∠ODA=∠EAD.
因?yàn)椤螮AD+∠EDA=90°,所以∠EDA+∠ODA=90°,即DE⊥OD.
所以DE是圓O的切線.
(Ⅱ)因?yàn)镈E是圓O的切線,所以DE2=EA·EB,
即62=3(3+AB),所以AB=9.
因?yàn)镺D∥MN, 所以O(shè)到MN的距離等于D到MN的距離,即為6
又因?yàn)镺為AC的中點(diǎn),C到MN的距離等于12
故△ABC的面積S=AB·BC=54.
考點(diǎn):三角形的面積以及圓的切線
點(diǎn)評(píng):主要是考查了圓的切線定義以及切割線定理的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線l的方程為,且直線l與x軸交于點(diǎn)M,圓與x軸交于兩點(diǎn)(如圖).
(I)過(guò)M點(diǎn)的直線交圓于兩點(diǎn),且圓孤恰為圓周的,求直線的方程;
(II)求以l為準(zhǔn)線,中心在原點(diǎn),且與圓O恰有兩個(gè)公共點(diǎn)的橢圓方程;
(III)過(guò)M點(diǎn)的圓的切線交(II)中的一個(gè)橢圓于兩點(diǎn),其中兩點(diǎn)在x軸上方,求線段CD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,圓內(nèi)有一點(diǎn),過(guò)點(diǎn)作直線交圓于 兩點(diǎn).(1)當(dāng)直線經(jīng)過(guò)圓心時(shí),求直線的方程;(2)當(dāng)弦被點(diǎn)平分時(shí),寫出直線方程;(3)當(dāng)直線傾斜角為時(shí),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
已知直線l的方程為,且直線l與x軸交于點(diǎn)M,圓與x軸交于兩點(diǎn)(如圖).
過(guò)M點(diǎn)的直線交圓于兩點(diǎn),且圓孤恰為圓周的,
求直線的方程; (2)求以l為準(zhǔn)線,中心在原點(diǎn),
且與圓O恰有兩個(gè)公共點(diǎn)的橢圓方程;
(3)設(shè)圓O內(nèi)部的點(diǎn)構(gòu)成集合A,
,若,
求滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年河北省高一下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題
(本題滿分12分)
如圖,圓內(nèi)有一點(diǎn),過(guò)點(diǎn)作直線交圓于兩點(diǎn).
(1)當(dāng)弦AB最長(zhǎng)時(shí),求直線的方程;
(2)當(dāng)直線被圓截得的弦長(zhǎng)為時(shí),求的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com