如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.

(Ⅰ)求證:平面ADE⊥平面ABE;

(Ⅱ)求點(diǎn)C到平面ADE的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°,F(xiàn)為AE中點(diǎn).
(Ⅰ)求證:平面ADE⊥平面ABE;
(Ⅱ)求二面角A-EB-D的大小的余弦值;
(Ⅲ)求點(diǎn)F到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°.
(I)求證:平面ADE⊥平面ABE;
(II)求二面角A-EB-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng)二模)如圖,在四棱錐E-ABCD中,矩形ABCD所在的平面與平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F(xiàn),G,H分別為BE,AE,BC的中點(diǎn)
(Ⅰ)求證:DE∥平面FGH;
(Ⅱ)若點(diǎn)P在直線GF上,
GP
GF
,且二面角D-BP-A的大小為
π
4
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)如圖,在四棱錐E-ABCD中,四邊形ABCD為平行四邊形,BE=BC,AE⊥BE,M為CE上一點(diǎn),且BM⊥面ACE.
(1)求證:AE⊥BC;
(2)若點(diǎn)N為線段AB的中點(diǎn),求證:MN∥面ADE;
(3)若 BE=4,CE=4
2
,且二面角A-BC-E的大小為45°,求三棱錐C-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=1200

(I)求證:平面ADE⊥平面ABE ;

(II)求二面角A—EB—D的大小的余弦值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案