求以過原點與圓x2+y2-4x+3=0相切的兩直線為漸近線,且過橢圓y2+4x2=4兩焦點的雙曲線的方程.

雙曲線方程為-=1.


解析:

已知圓圓心為(2,0),半徑為1,設過原點的切線方程為y=kx,

=1.

∴k=±.

已知橢圓為x2+=1,c==,

其焦點為(0,),(0,-),

設所求雙曲線方程為-=1,

∴所求雙曲線方程為-=1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求以過原點與圓x2+y2-4x+3=0相切的兩直線為漸近線且過橢圓4x2+y2=4兩焦點的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求以過原點與圓x2+y2-4x+3=0相切的兩直線為漸近線且過橢圓4x2+y2=4兩焦點的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求以過原點與圓x2+y2-4x+3=0相切的兩直線為漸近線,且過橢圓y2+4x2=4兩焦點的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2004-2005學年重慶一中高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

求以過原點與圓x2+y2-4x+3=0相切的兩直線為漸近線且過橢圓4x2+y2=4兩焦點的雙曲線方程.

查看答案和解析>>

同步練習冊答案