分析 (1)利用倍角公式、直角坐標與極坐標的互化公式即可得出.
(2)直線l的參數(shù)方程為:$\left\{\begin{array}{l}y=\frac{{\sqrt{3}}}{2}t\\ x=m+\frac{1}{2}t\end{array}\right.$(t為參數(shù)),代入雙曲線方程:3t2-4mt+4-4m2=0,利用$2\sqrt{10}$=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.
解答 解:(1)曲線C的極坐標方程為:ρ2cos2θ=1,即:ρ2(cos2θ-sin2θ)=1.
∴x2-y2=1.
(2)直線l的參數(shù)方程為:$\left\{\begin{array}{l}y=\frac{{\sqrt{3}}}{2}t\\ x=m+\frac{1}{2}t\end{array}\right.$(t為參數(shù)),代入雙曲線方程:3t2-4mt+4-4m2=0,
△=16m2-12(4-4m2)>0,解得:m2$>\frac{3}{4}$.
t1+t2=$\frac{4m}{3}$,t1t2=$\frac{4-4{m}^{2}}{3}$.
∴$2\sqrt{10}$=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{\frac{16{m}^{2}}{9}-\frac{4(4-4{m}^{2})}{9}}$,
解得m=$±\frac{\sqrt{47}}{2}$.
點評 本題考查了極坐標方程化為直角坐標方程、直線與雙曲線相交弦長問題,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{π}{4}$ | B. | $-\frac{π}{2}$ | C. | $\frac{π}{8}$ | D. | $\frac{5π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com