某學(xué)校的組織學(xué)生參加體育而課堂訓(xùn)練,三個(gè)項(xiàng)目的人數(shù)分布如下表(每名學(xué)生只能參加一項(xiàng)):
短跑 長跑 跳高
男生 30 3 28
女生 25 2 m
學(xué)校要對這三個(gè)項(xiàng)目學(xué)生參加情況進(jìn)行抽樣調(diào)查,按分層抽樣的方法從三個(gè)項(xiàng)目中抽取18人,結(jié)果參加跳高的項(xiàng)目被抽出了6人.
(1)求跳高項(xiàng)目中女生有多少人;
(2)從參加長跑的3名男生和2名女生中隨機(jī)選出2人參加比賽,求這兩名同學(xué)是一名男生和一名女生的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:(1)根據(jù)分層抽樣的要求,每層的抽樣比相等,所以有
6
28+m
=
18
30+25+3+2+28+m
,解方程的求得答案;
(20從參加長跑的3名男生和2名女生中隨機(jī)選出2人參加比賽,有
A
2
5
=10種不同的方法,由于是隨機(jī)抽樣,每個(gè)結(jié)果出現(xiàn)的可能是相等的,可以利用古典概率.
解答: 解(1)根據(jù)分層抽樣的要求,每層的抽樣比相等,所以有
6
28+m
=
18
30+25+3+2+28+m
,
解得m=2,
(2)從參加長跑的3名男生和2名女生中隨機(jī)選出2人參加比賽,有
A
2
5
=10種不同的方法,這兩名同學(xué)是一名男生和一名女生的有
A
1
3
•A
1
2
=6種,
設(shè)A=這兩名同學(xué)是一名男生和一名女生,則事件A有6個(gè)基本事件,
所以P(A)=
6
10
=
3
5
點(diǎn)評:本題主要考查了樣本的抽樣和概率的問題,本題的關(guān)鍵是求出基本事件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下有四種說法:
①若p或q為真,p且q為假,則p與q必為一真一假;
②若數(shù)列{an}的前n項(xiàng)和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
③若實(shí)數(shù)t滿足f(t)=-t,則稱t是函數(shù)f(x)的一個(gè)次不動點(diǎn).設(shè)函數(shù)f(x)=lnx與函數(shù)g(x)=ex(其中e為自然對數(shù)的底數(shù))的所有次不動點(diǎn)之和為m,則m=0;
④若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期.
以上四種說法,其中說法正確的是( 。
A、①③B、③④
C、①②③D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有甲、乙、丙三人參加某電視臺的應(yīng)聘節(jié)目《非你莫屬》,若甲應(yīng)聘成功的概率為
1
2
,乙、丙應(yīng)聘成功的概率均為
t
2
(0<t<2),且三個(gè)人是否應(yīng)聘成功是相互獨(dú)立的.
(Ⅰ)若乙、丙有且只有一個(gè)人應(yīng)聘成功的概率等于甲應(yīng)聘成功是相互獨(dú)立的,求t的值;
(Ⅱ)記應(yīng)聘成功的人數(shù)為ξ,若當(dāng)且僅當(dāng)ξ為2時(shí)概率最大,求E(ξ)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求定積分
1
-1
f(x)dx,其中f(x)=
sinx-1  (x≤0)
x2   (x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
2
5
5
,sin(α-β)=
10
10
,且α,β∈(0,
π
2
).求:
(Ⅰ)cos(2α-β)的值.
(Ⅱ)β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)四面體的全面積為S,四個(gè)面面積最大者記為S1,求
S
S1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2+bx,g(x)=alnx+x(a≠0)
(1)若函數(shù)f(x)存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)當(dāng)b=0且a>0時(shí),令F(x)=
f(x),x<1
g(x)-x,x≥1
,P(x1,F(xiàn)(x1)),Q(x2,F(xiàn)(x2))為曲線y=F(x)上的兩動點(diǎn),O為坐標(biāo)原點(diǎn),能否使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知箱子里裝有4張大小、形狀都相同的卡片,標(biāo)號分別為1,2,3,4.
(Ⅰ)從箱子中任取兩張卡片,求兩張卡片的標(biāo)號之和不小于5的概率;
(Ⅱ)從箱子中任意取出一張卡片,記下它的標(biāo)號m,然后再放回箱子中;第二次再從箱子中任取一張卡片,記下它的標(biāo)號n,求使得冪函數(shù)f(x)=(m-n)2x
m
n
圖象關(guān)于y軸對稱的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=msinx+
3
cosx,(m>0)的最大值為2.
(1)求函數(shù)f(x)在[0,π]上的值域;
(2)已知△ABC外接圓半徑R=2,f(A-
π
3
)+f(B-
π
3
)=8sinAsinB,角A,B所對的邊分別是a,b,求
1
a
+
1
b
的值.

查看答案和解析>>

同步練習(xí)冊答案