【題目】已知a,b,c均為正數(shù),且a+2b+3c=9.求證: + + ≥ .
【答案】證明:由a,b,c均為正數(shù),運(yùn)用柯西不等式可得:
(a+2b+3c)( + + )≥( + + )2
=( + + )2=1,
由a+2b+3c=9,可得 + + ≥ ,
當(dāng)且僅當(dāng)a=3b=9c,即a= ,b= ,c= 時(shí),等號(hào)成立.
【解析】由a,b,c均為正數(shù),運(yùn)用柯西不等式可得(a+2b+3c)( + + )≥( + + )2,
化簡(jiǎn)整理,結(jié)合條件即可得證.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解不等式的證明的相關(guān)知識(shí),掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m>0,n>0, +mn的最小值為t.
(1)求t值
(2)解關(guān)于x的不等式|x﹣1|<t+2x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=axlnx+bx(a≠0)在(1,f(1))處的切線與x軸平行,(e=2.71828)
(1)試討論f(x)在(0,+∞)上的單調(diào)性;
(2)①設(shè)g(x)=x+ ,x∈(0,+∞),求g(x)的最小值; ②證明: ≥1﹣x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy 中,F(xiàn),A,B 分別為橢圓 的右焦點(diǎn)、右頂點(diǎn)和上頂點(diǎn),若
(1)求a的值;
(2)過(guò)點(diǎn)P(0,2)作直線l 交橢圓于M,N 兩點(diǎn),過(guò)M 作平行于x 軸的直線交橢圓于另外一點(diǎn)Q,連接NQ ,求證:直線NQ 經(jīng)過(guò)一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若 是函數(shù) 圖象的一條對(duì)稱(chēng)軸,當(dāng)ω取最小正數(shù)時(shí)( )
A.f(x)在 單調(diào)遞減
B.f(x)在 單調(diào)遞增
C.f(x)在 單調(diào)遞減
D.f(x)在 單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】品酒師需定期接受酒味鑒別功能測(cè)試,一種通常采用的測(cè)試方法如下:拿出n瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過(guò)一段時(shí)間,等其記憶淡忘之后,再讓其品嘗這n瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱(chēng)為一輪測(cè)試.根據(jù)一輪測(cè)試中的兩次排序的偏離程度的高低為其評(píng)分. 現(xiàn)設(shè)n=4,分別以a1 , a2 , a3 , a4表示第一次排序時(shí)被排為1,2,3,4的四種酒在第二次排序時(shí)的序號(hào),并令X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|,
則X是對(duì)兩次排序的偏離程度的一種描述.
(Ⅰ)寫(xiě)出X的可能值集合;
(Ⅱ)假設(shè)a1 , a2 , a3 , a4等可能地為1,2,3,4的各種排列,求X的分布列;
(Ⅲ)某品酒師在相繼進(jìn)行的三輪測(cè)試中,都有X≤2,
①試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪測(cè)試相互獨(dú)立);②你認(rèn)為該品酒師的酒味鑒別功能如何?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0)
(1)當(dāng)a=2時(shí),求不等式f(x)>3的解集;
(2)證明:f(m)+f(﹣ )≥4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),當(dāng)θ變化時(shí),求|AB|的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com