由集合{a1},{a1,a2},{a1,a2,a3},…的子集個數(shù)歸納出集合{a1,
a2,a3,…,an}的子集個數(shù)為( )
A.n | B.n+1 |
C.2n | D.2n-1 |
科目:高中數(shù)學(xué) 來源: 題型:單選題
用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,反設(shè)正確的是( )
A.假設(shè)三內(nèi)角都大于60度; |
B.假設(shè)三內(nèi)角都不大于60度; |
C.假設(shè)三內(nèi)角至多有一個大于60度; |
D.假設(shè)三內(nèi)角至多有兩個大于60度。 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在應(yīng)用數(shù)學(xué)歸納法證明凸n變形的對角線為條時,第一步檢驗n等于( )
A.1 | B.2 | C.3 | D.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10=( )
A.28 | B.76 | C.123 | D.199 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
學(xué)習(xí)合情推理后,甲、乙兩位同學(xué)各舉了一個例子,
甲:由“若三角形周長為l,面積為S,則其內(nèi)切圓半徑r=”類比可得“若三棱錐表面積為S,體積為V,則其內(nèi)切球半徑r=”;
乙:由“若直角三角形兩直角邊長分別為a、b,則其外接圓半徑r=”類比可得“若三棱錐三條側(cè)棱兩兩垂直,側(cè)棱長分別為a、b、c,則其外接球半徑r=”.這兩位同學(xué)類比得出的結(jié)論( )
A.兩人都對 | B.甲錯、乙對 |
C.甲對、乙錯 | D.兩人都錯 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
觀察下列各式:72=49,73=343,74=2401,…,則72011的末兩位數(shù)字為( )
A.01 | B.43 |
C.07 | D.49 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知n是正偶數(shù),用數(shù)學(xué)歸納法證明時,若已假設(shè)n=k(k≥2且為偶數(shù))時命題為真,則還需證明( )
A.n=k+1時命題成立 |
B.n=k+2時命題成立 |
C.n=2k+2時命題成立 |
D.n=2(k+2)時命題成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“a·b=b·a”;
②“(m+n)t=mt+nt”類比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”類比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt⇒m=x”類比得到“p≠0,a·p=x·p⇒a=x”;
⑤“|m·n|=|m|·|n|”類比得到“|a·b|=|a|·|b|”;
⑥“=”類比得到“=”.
以上的式子中,類比得到的結(jié)論正確的個數(shù)是( )
A.1 | B.2 | C.3 | D.4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com