由集合{a1},{a1,a2},{a1,a2,a3},…的子集個數(shù)歸納出集合{a1,
a2,a3,…,an}的子集個數(shù)為(  )

A.n B.n+1 
C.2n D.2n-1 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

用反證法證明命題:“三角形的內(nèi)角中至少有一個不大于60度”時,反設(shè)正確的是(   )

A.假設(shè)三內(nèi)角都大于60度; 
B.假設(shè)三內(nèi)角都不大于60度; 
C.假設(shè)三內(nèi)角至多有一個大于60度; 
D.假設(shè)三內(nèi)角至多有兩個大于60度。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在應(yīng)用數(shù)學(xué)歸納法證明凸n變形的對角線為條時,第一步檢驗n等于( )

A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

用數(shù)學(xué)歸納法證明:,第二步證明“從”,左端增加的項數(shù)是(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10=(  )

A.28B.76C.123D.199

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

學(xué)習(xí)合情推理后,甲、乙兩位同學(xué)各舉了一個例子,
甲:由“若三角形周長為l,面積為S,則其內(nèi)切圓半徑r”類比可得“若三棱錐表面積為S,體積為V,則其內(nèi)切球半徑r”;
乙:由“若直角三角形兩直角邊長分別為ab,則其外接圓半徑r”類比可得“若三棱錐三條側(cè)棱兩兩垂直,側(cè)棱長分別為a、bc,則其外接球半徑r”.這兩位同學(xué)類比得出的結(jié)論(  )

A.兩人都對 B.甲錯、乙對
C.甲對、乙錯 D.兩人都錯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

觀察下列各式:72=49,73=343,74=2401,…,則72011的末兩位數(shù)字為(  )

A.01 B.43
C.07 D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知n是正偶數(shù),用數(shù)學(xué)歸納法證明時,若已假設(shè)n=k(k≥2且為偶數(shù))時命題為真,則還需證明(  )

A.n=k+1時命題成立 
B.n=k+2時命題成立 
C.n=2k+2時命題成立 
D.n=2(k+2)時命題成立 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“a·b=b·a”;
②“(m+n)t=mt+nt”類比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”類比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt⇒m=x”類比得到“p≠0,a·p=x·p⇒a=x”;
⑤“|m·n|=|m|·|n|”類比得到“|a·b|=|a|·|b|”;
⑥“=”類比得到“=”.
以上的式子中,類比得到的結(jié)論正確的個數(shù)是(  )

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習(xí)冊答案