在平面直角坐標系xoy中,已知點A(-2,1),直線l:2x-y-3=0.
(1)若直線m過點A,且與直線l垂直,求直線m的方程;
(2)若直線n與直線l平行,且在x軸、y軸上的截距之和為3,求直線n的方程.
分析:(1)由題意,直線l的斜率為2,所以直線m的斜率為-
1
2
,可得點斜式方程,化為一般式即可;(2)由題意可設直線n的方程為y=2x+b,分別可得截距,可得關于b的方程,解之可得.
解答:解:(1)由題意,直線l的斜率為2,所以直線m的斜率為-
1
2
,(3分)
所以直線m的方程為y-1=-
1
2
(x+2),即x+2y=0.(6分)
(2)由題意,直線l的斜率為2,所以直線n的斜率為2,
設直線n的方程為y=2x+b.(9分)
令x=0,得y=b;令y=0,得x=-
b
2
.(11分)
由題知b-
b
2
=3,解得b=6.
所以直線n的方程為y=2x+6,即2x-y+6=0.(14分)
點評:本題考查直線的一般式方程,涉及直線的垂直關系和直線的截距式方程,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案