盒子中裝有四張大小形狀均相同的卡片,卡片上分別標有數(shù)其中是虛數(shù)單位.稱“從盒中隨機抽取一張,記下卡片上的數(shù)后并放回”為一次試驗(設(shè)每次試驗的結(jié)果互不影響).
(1)求事件 “在一次試驗中,得到的數(shù)為虛數(shù)”的概率與事件 “在四次試驗中,
至少有兩次得到虛數(shù)” 的概率;
(2)在兩次試驗中,記兩次得到的數(shù)分別為,求隨機變量的分布列與數(shù)學(xué)期望
(1)  (2)分布列詳見解析,
(1)根據(jù)隨機事件的概率公式求P(A)即可;
在四次試驗中,至少有兩次得到虛數(shù)的對立事件是至少有一次得到虛數(shù)或一次也沒有得到虛數(shù),根據(jù)獨立重復(fù)事件的概率公式求其概率,最后再由對立事件的概率公式求解.
(2)寫出隨機變量所有可能的取值,計算相應(yīng)的概率列表即可得分布列,根據(jù)數(shù)學(xué)期望公式求其值.
試題分析:
試題解析:(1),                            2分
     5分
(2)的可能取值如下左表所示:

6分
由表可知:        9分
所以隨機變量的分布列為(如表)                       10分








所以                      12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某網(wǎng)絡(luò)營銷部門為了統(tǒng)計某市網(wǎng)友2013年11月11日在某淘寶店的網(wǎng)購情況,隨機抽查了該市當天名網(wǎng)友的網(wǎng)購金額情況,得到如下數(shù)據(jù)統(tǒng)計表(如圖):

若網(wǎng)購金額超過千元的顧客定義為“網(wǎng)購達人”,網(wǎng)購金額不超過千元的顧客定義為“非網(wǎng)購達人”,已知“非網(wǎng)購達人”與“網(wǎng)購達人”人數(shù)比恰好為
(1)試確定,,的值,并補全頻率分布直方圖(如圖(2)).
(2)該營銷部門為了進一步了解這名網(wǎng)友的購物體驗,從“非網(wǎng)購達人”、“網(wǎng)購達人”中用分層抽樣的方法確定人,若需從這人中隨機選取人進行問卷調(diào)查.設(shè)為選取的人中“網(wǎng)購達人”的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

由于當前學(xué)生課業(yè)負擔較重,造成青少年視力普遍下降,現(xiàn)從某中學(xué)隨機抽取16名學(xué)生,經(jīng)校醫(yī)用對數(shù)視力表檢査得到每個學(xué)生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:
(I )若視力測試結(jié)果不低于5 0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(II)以這16人的樣本數(shù)據(jù)來估計整個學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記表示抽到“好視力”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望,據(jù)此估計該校高中學(xué)生(共有5600人)好視力的人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋中裝有10個大小相同的小球.其中白球5個、黑球4個、紅球1個.
(1)從袋中任意摸出2個球,求至少得到1個白球的概率;
(2)從袋中任意摸出3個球,記得到白球的個數(shù)為,求隨機變量的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙丙三人商量周末去玩,甲提議去市中心逛街,乙提議去城郊覓秋,丙表示隨意。最終,商定以拋硬幣的方式?jīng)Q定結(jié)果。規(guī)則是:由丙拋擲硬幣若干次,若正面朝上則甲得一分乙得零分,反面朝上則乙得一分甲得零分,先得4分者獲勝,三人均執(zhí)行勝者的提議.記所需拋幣次數(shù)為.
⑴求=6的概率;
⑵求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知二項式(
x2
+
1
2
x
)n
(n∈N*)
n(n∈N*)展開式中,前三項的二項式系數(shù)和是56,則展開式中的常數(shù)項為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知盒中有10個燈泡,其中8個正品,2個次品.需要從中取出2只正品,每次取一個,取出后不放回,直到取出2個正品為止.設(shè)X為取出的次數(shù),求X的概率分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛汽車中被堵車輛的個數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的個數(shù)是
(1)線性回歸方程必過
(2)在一個列聯(lián)表中,由計算得=4.235,則有95%的把握確認這兩個變量間沒有關(guān)系
(3)復(fù)數(shù)
(4)若隨機變量,且p(<4)=p,則p(0<<2)=2p-1
A.1B.2C.3D. 4

查看答案和解析>>

同步練習(xí)冊答案