精英家教網 > 高中數學 > 題目詳情

已知二次函數f(x)=x2+ax().

(1)若函數y=f(sinx+cosx)()的最大值為,求f(x)的最小值;

(2)當a>2時,求證:f(sin2xlog2sin2x+cos2xlog2cos2x)1–a.其中x∈R,x¹kp且x¹kp(k∈Z).

 

【答案】

(1);(2)見解析.

【解析】

試題分析:(1)先求的值域,再討論a的范圍,根據最大值,求最小值;(2)利用導數先求sin2xlog2sin2x+cos2xlog2cos2x的值域,再根據二次函數求結論.

試題解析:(1)令,        2分

,當a<0時,t=–2時,,

解得:

此時.            2分

時,t=2時,,解得:

此時,

綜合上述,條件滿足時,的最小值為              2分

(2)x∈R,

,故設,則有

(其中t∈(0,1))           2分

             2分

,得

時,,所以在(0,)單調遞減,

時,,所以在(,1)單調遞增,

取最小值等于

即有          3分

當a>2時,的對稱軸,

上單調遞增,

          2分

考點:1、利用導數求函數的單調性;2、二次函數;3、導數與二次函數、三角函數的綜合應用.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+
1
2
滿足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表達式;
(2)若f(x)在定義域(-1,t]上的值域為(-1,1],求t的取值范圍;
(3)是否存在實數m、n(m<n),使f(x)定義域和值域分別為[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c,函數y=f(x)+
2
3
x-1
的圖象過原點且關于y軸對稱,記函數 h(x)=
x
f(x)

(I)求b,c的值;
(Ⅱ)當a=
1
10
時,求函數y=h(x)
的單調遞減區(qū)間;
(Ⅲ)試討論函數 y=h(x)的圖象上垂直于y軸的切線的存在情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數,試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當a>0時判斷f(x)在(-1,1)上的單調性;
(3)若方程g(x)=x的兩實根為x1,x2f(x)=0的兩根為x3,x4,求使x3<x1<x2<x4成立的a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=
-x2-x+2
的定義域為A,若對任意的x∈A,不等式x2-4x+k≥0成立,則實數k的最小值為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)為偶函數,試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不相等的實根,當a>0時判斷f(x)在(-1,1)上的單調性;
(3)當b=2a時,問是否存在x的值,使?jié)M足-1≤a≤1且a≠0的任意實數a,不等式f(x)<4恒成立?并說明理由.

查看答案和解析>>

同步練習冊答案