(本小題滿分12分)
已知函數(shù)f(x)=log a (a>0且a≠1)的圖像關(guān)于原點(diǎn)對(duì)稱
(1)求m的值;
(2)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性并加以證明;
(3)當(dāng)a>1,x∈(t,a)時(shí), f(x)的值域是(1,+∞),求a與t的值。
解:(1)由已知f(-x)=-f(x) 即loga+loga=0 ………………………….1分
∴(1-mx)(1+mx)=(x+1)(1-x) 1-m2x2=1-x2 ∴m=1 …………….3分
當(dāng)m=1時(shí),=-1<0 舍去 ∴ m=-1 ……………….4分
(2)由(1)得f(x)=loga 任取1<x1<x2
f(x2)- f(x1)= loga- loga= loga
∵1<x1<x2 ∴(x2+1)(x1-1)-(x2-1)(x1+1)=2(x1-x2) ∴0<<1
當(dāng)a∈(0,1)時(shí) loga>0,∴f(x2) > f(x1),此時(shí)f(x)為增函數(shù)…7
當(dāng)a∈(1,+∞)時(shí) loga<0,∴f(x2) < f(x1) 此時(shí)為減函數(shù)。.8分
(3)有(2)知:當(dāng)a>1時(shí),f(x)在(1,+∞)為減函數(shù)
由>0有x<-1或x>1∴(t,a) (1,+∞) …………………………..9分
即f(x)在(t,a)上遞減,∴f(a)=1, ∴a=1+,且→+∞,∴t=1 ……………12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com