【題目】已知點F1(﹣1,0),F(xiàn)2(1,0),動點M到點F2的距離是 ,線段MF1的中垂線交線段MF2于點P. (Ⅰ)當(dāng)點M變化時,求動點P的軌跡G的方程;
(Ⅱ)過點F2且不與x軸重合的直線L與曲線G相交于A,B兩點,過點B作x軸的平行線與直線x=2相交于點C,則直線AC是否恒過定點,若是請求出該定點,若不是請說明理由.
【答案】解:(Ⅰ)∵P在線段MF1的中垂線上,∴PM=PF1 , 又P在線段MF2上,∴PM+PF2=MF2=2 ,
∴PF1+PF2=2 ,而F1F2=2,
∴動點P的軌跡G是以F1 , F2為焦點的橢圓,
設(shè)橢圓方程為 ,則2a=2 ,c=1,∴a= ,b=1,
∴動點P的軌跡方程為 .
(Ⅱ)①當(dāng)l的斜率不存在時,不妨取 , ,
∴C(2,﹣ ),直線AC的方程為 x+y﹣ =0,
此時易知AC過點 .
②當(dāng)l的斜率存在時,設(shè)l的方程為:y=k(x﹣1)
聯(lián)立方程組 ,消去y得:(1+2k2)x2﹣4k2x+2k2﹣2=0,
設(shè)A(x1 , y1)、B(x2 , y2),則C(2,y2),且x1+x2= , ,
直線AC方程為 ,
∴ = = = = .
當(dāng) 時,y=0;
綜上可知,直線AC恒過定點 .
【解析】(I)由中垂線性質(zhì)可得PM+PF2=MF2=2 ,故而P點軌跡為F1 , F2為焦點的橢圓,利用定義求出a,b即可得出方程;(II)討論直線l的斜率,聯(lián)立方程組,利用根與系數(shù)的關(guān)系求出直線AC的方程,根據(jù)方程判斷即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距640米,余下工程只需要建兩端橋墩之間的橋面和橋墩,經(jīng)預(yù)測,一個橋墩的工程費用為256萬元,距離為米的相鄰兩墩之間的橋面工程費用為萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,設(shè)需要新建個橋墩,記余下工程的費用為萬元.
(1)試寫出關(guān)于的函數(shù)關(guān)系式;(注意:)
(2)需新建多少個橋墩才能使最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A.?x0∈R,sinx0+cosx0=
B.?x0∈R,tanx0=2016
C.?x>0,x>lnx
D.?x∈R,2x>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn滿足(p﹣1)Sn=p2﹣an(p>0,p≠1),且a3= .
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,數(shù)列{bnbn+2}的前n項和為Tn , 若對于任意的正整數(shù)n,都有Tn<m2﹣m+ 成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了各個城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)研機構(gòu)在該市隨機抽取了位市民進行調(diào)查,得到的列聯(lián)表(單位:人)
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為使用共享單車的情況與年齡有關(guān)?(結(jié)果保留3位小數(shù))
(2)現(xiàn)從所抽取的歲以上的市民中利用分層抽樣的方法再抽取5人
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機抽取2人贈送一件禮物,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標準如表:
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
該公司從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如表:
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
頻數(shù) | 60 | 20 | 10 | 5 | 5 |
假設(shè)汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(3)設(shè)該公司從至少消費兩次,求這的顧客消費次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀念品,求抽出2人中恰有1人消費兩次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線C: =1(a>0,b>0)的右頂點為A,O為坐標原點,以A為圓心的圓與雙曲線C的某漸近線交于兩點P,Q,若∠PAQ= ,且 |,則雙曲線C的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com