對(duì)于函數(shù),若,則稱為函數(shù)的“不動(dòng)點(diǎn)”;若,則稱為函數(shù)的“穩(wěn)定點(diǎn)”.如果函數(shù)的“穩(wěn)定點(diǎn)”恰是它的“不動(dòng)點(diǎn)”,那么實(shí)數(shù)的取值范圍是(    )

A. B. C. D. 

D

解析試題分析:,
由于的“穩(wěn)定點(diǎn)”為函數(shù)的“不動(dòng)點(diǎn)”,故方程有實(shí)數(shù)根,而方程
無(wú)實(shí)數(shù)根,故有且有,解得.
考點(diǎn):二次函數(shù)的零點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

方程有解,則的取值范圍(    )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知,則的大小關(guān)系是(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

給出下列函數(shù)①,其中是奇函數(shù)的是(  )

A.①② B.①④ C.②④ D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

[x]表示不超過(guò)x的最大整數(shù),例如[2.9]=2,[-4.1]=-5,已知f(x)=x-[x](x∈R),g(x)=log4(x-1),則函數(shù)h(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù)是(      )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

函數(shù)的圖象大致是(    )
        
(A)             (B)            (C)            (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

下圖展示了一個(gè)由區(qū)間(其中為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過(guò)程:區(qū)間中的實(shí)數(shù)對(duì)應(yīng)線段上的點(diǎn),如圖1;將線段圍成一個(gè)離心率為的橢圓,使兩端點(diǎn)恰好重合于橢圓的一個(gè)短軸端點(diǎn),如圖2 ;再將這個(gè)橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在軸上,已知此時(shí)點(diǎn)的坐標(biāo)為,如圖3,在圖形變化過(guò)程中,圖1中線段的長(zhǎng)度對(duì)應(yīng)于圖3中的橢圓弧ADM的長(zhǎng)度.圖3中直線與直線交于點(diǎn),則與實(shí)數(shù)對(duì)應(yīng)的實(shí)數(shù)就是,記作,

現(xiàn)給出下列5個(gè)命題
;   ②函數(shù)是奇函數(shù);③函數(shù)上單調(diào)遞增;   ④.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;⑤函數(shù)時(shí)AM過(guò)橢圓的右焦點(diǎn).其中所有的真命題是:   (  )

A.①③⑤B.②③④C.②③⑤D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知,符號(hào)表示不超過(guò)的最大整數(shù),若函數(shù)有且僅有3個(gè)零點(diǎn),則的取值范圍是(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若函數(shù)處取最小值, 則=(  )

A.1+ B.1+ C.3 D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案