設(shè)函數(shù)f(x)=x+ax2+blnx(a,b∈R),曲線y=f(x)過P(1,0),且在P點處的切線斜率為2.
(1)求a,b的值;
(2)令g(x)=f(x)-3x+2,求函數(shù)g(x)在x=1處的切線方程.
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,建立方程組,即可a,b的值;
(2)寫出g(x)的表達式,求出導(dǎo)數(shù),求得切線的斜率和切點,再由點斜式方程,即可得到切線方程.
解答: 解:(1)∵函數(shù)f(x)=x+ax2+blnx過點P(1,0),
∴f(1)=1+a=0,即a=-1.
函數(shù)f(x)=x-x2+blnx的導(dǎo)數(shù)為f′(x)=x-2x+
b
x
,
∵曲線y=f(x)過點P(1,0)且在點P處的切線斜率為2,
∴k=f′(1)=1-2+b=2,解得b=3,
即a=-1,b=3;
(2)g(x)=f(x)-3x+2=x-x2+3lnx-3x+2=-2x-x2+3lnx+2,
則g′(x)=-2-2x+
3
x
,則函數(shù)g(x)在x=1處的切線斜率為-2-2+3=-1,
切點為(1,g(1))即為(1,-1),
則切線方程為:y+1=-(x-1),
即為x+y=0.
點評:本題主要考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)的幾何意義求出切線斜率是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面的四個不等式:
①a2+b2+c2≥ab+bc+ca;②a(1-a)≤
1
4
;③
a
b
+
b
a
≥2;④(a2+b2)•(c2+d2)≥(ac+bd)2
其中不成立的有
 
 個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義兩個平面向量的一種運算
a
?
b
=|
a
|•|
b
|sin<
a
,
b
>,則關(guān)于平面向量上述運算的以下結(jié)論中,
a
?
b
=
b
?
a

②λ(
a
?
b
)=(λ
a
)?
b
,
③若
a
b
,則
a
?
b
=0;
④若
a
b
,且λ>0,則(
a
+
b
)?
c
=(
a
?
c
)+(
b
?
c
);
恒成立的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意的x>0,總有 f(x)=a-x-|lgx|≤0,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:以下命題正確的是
 
 (注:把你認為正確的命題的序號都填上)
①非零向量
a
、
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°;
a
b
>0,是
a
、
b
的夾角為銳角的充要條件;
③命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0”;
④若(
AB
+
AC
•(
AB
-
AC
)
=0,則△ABC為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:函數(shù)f(x)=(m2-m)x-1的圖象在R上遞減;q:曲線y=x2+(2m-3)x+1與x軸交于不同兩點,如果p或q為真,p且q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,則logab>0是(a-1)(b-1)>0的( 。
A、充分而不必要條件
B、必要而充分要條件
C、必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某會議室第一排有8個座位,現(xiàn)安排甲、乙、丙3人就做,若要求3人左右兩邊均為空位,且丙在甲、乙之間,則不同的坐法為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

-685°的終邊落在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊答案